Advertisement

Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production

  • Stefan KraanEmail author
Original Article

Abstract

Global demand for bio-fuels continues unabated. Rising concerns over environmental pollution and global warming have encouraged the movement to alternate fuels, the world ethanol market is projected to reach 86 billion litres this year. Bioethanol is currently produced from land-based crops such as corn and sugar cane. A continued use of these crops drives the food versus fuel debate. An alternate feed-stock which is abundant and carbohydrate-rich is necessary. The production of such a crop should be sustainable, and, reduce competition with production of food, feed, and industrial crops, and not be dependent on agricultural inputs (pesticides, fertilizer, farmable land, water). Marine biomass could meet these challenges, being an abundant and carbon neutral renewable resource with potential to reduce green house gas (GHG) emissions and the man-made impact on climate change. Here we examine the current cultivation technologies for marine biomass and the environmental and economic aspects of using brown seaweeds for bio-ethanol production.

Keywords

Biofuel Bioethanol CO2 uptake Fermentation Large-scale cultivation Macroalgae Seaweed 

References

  1. Aasen IM, Folkvord K, Levine DW (1992) Development of a process for large-scale chromatographic purification of an alginate lyase from Klebsiella pneumonia. Appl Microbiol Biotechnol 37:55–60CrossRefGoogle Scholar
  2. Adams JM, Gallagher JA, Donnison IS (2009) Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. J Appl Phycol 21(5):569–574CrossRefGoogle Scholar
  3. Annon. (2006a) Biofuels in the European Union—A vision for 2030 and beyond, 2006Google Scholar
  4. Annon. (2006b) Commission of the European Communities, Communication from the Commission; An EU Strategy for Biofuels. Brussels 8.2.2006Google Scholar
  5. Annon. (2008a) European Biofuels Technology Platform: Strategic Research Agenda & Strategy Deployment Document, January 2008 pp 42Google Scholar
  6. Arzel P (1998) Les laminaires sur les côtes bretonnes. Evolution de l’exploitation et de la flottille de pêche, état actuel et perspectives. Editions IFREMER BP 70 – 29280 Plouzané –France, pp 139Google Scholar
  7. Ballesteros I, Oliva JM, Negro MJ, Manzanares P, Ballesteros M (2002) Enzymic hydrolysis of steam exploded herbaceous agricultural waste (Brassica carinata) at different particle sizes. Process Biochem 38(2):187–92CrossRefGoogle Scholar
  8. Bartsch I, Wiencke C, Bischof K, Buchholz CM, Buck BH, Eggert A, Feuerpeeil P, Hanelt D, Jacobsen S, Karez R, Karsten U, Molis M, Roleda MY, Schubert H, Schumann R, Valentin K, Weinberger F, Wiese J (2008) The genus Laminaria sensu lato: recent insights and developments. Eur J Phycol 43:1–86CrossRefGoogle Scholar
  9. Birkett DA, Maggs CA, Dring MJ, Boaden PJS, Seed R (1988) Infralittoral reef biotopes with kelp species (volume VII). An overview of dynamic and sensitivity characteristics for conservation management of marine SACs. Scottish Association of Marine Science (UK Marine SACs Project). 174 ppGoogle Scholar
  10. Brinkhuis BH, Levine HG, Schlenk GG, Tobin S (1987) Laminaria cultivation in the Far East and North America. In: Bird KT, Benson PH (eds) Seaweed cultivation for renewable resources. Elsevier, Amsterdam, pp 107–146Google Scholar
  11. Buck BH, Buchholz CM (2004) The offshore-ring: a new system design for the open ocean aquaculture of macroalgae. J Appl Phycol 16:355–368CrossRefGoogle Scholar
  12. Buschmann AH, Correa JA, Westermeier R, del Carmen Hernandez-Gonzalez M, Norambuena R (2001) Red algal farming in Chile: a review. Aquaculture 194:203–220CrossRefGoogle Scholar
  13. Carmona R, Kraemer GP, Yarish C (2006) Exploring Northeast American and Asian species of Porphyra for use in an integrated finfish–algal aquaculture system. Aquaculture 252:54–65CrossRefGoogle Scholar
  14. Carr M (1983) Spatial and temporal patterns of recruitment of young of the year rockfishes (genus Sebastes) into a central Californian kelp forest. MSc. Thesis: San Francisco State University, San Francisco, California. 104 ppGoogle Scholar
  15. Chapman ARO (1987) The wild harvest and culture of Laminaria longicruris de la Pylaie in Eastern Canada. In: Doty MS, Caddy TF, Santelices B (eds) Case studies of seven commercial seaweed resources. FAO Fisheries Technical Paper, 181:193–238Google Scholar
  16. Chynoweth DP (2002) Review of biomethane from Marine Biomass. Review of history, results and conclusions of the “US Marine Biomass Energy Program” (1968–1990), 194 ppGoogle Scholar
  17. Chynoweth DP, Ghosh S, Klass DL (1981) Anaerobic digestion of kelp. In: Sofer SS, Zaborsky OR (eds) Biomass conversion processes for energy and fuels. Plenum, New York, pp 315–338CrossRefGoogle Scholar
  18. Chynoweth DP, Fannin KF, Srivastava VJ (1987) Biological gasification of marine algae. In: Bird KT, Benson PH (eds) Seaweed cultivation for renewable resources. Elsevier, Amsterdam, pp 285–304Google Scholar
  19. Chiu YW, Walsh B, Suh S (2009) Water embodied in bioethanol in the United States. Environ Sci Technol 43:2688–2692CrossRefGoogle Scholar
  20. Chopin T, Buschmann AH, Halling C, Troell M, Kautsky N, Neori A, Kraemer GP, Zertuche-Gonzalez JA, Yarish C, Neefus C (2001) Integrating seaweeds into marine aquaculture systems: a key towards sustainability. J Phycol 37:975–986CrossRefGoogle Scholar
  21. Chopin T, Robinson S, Sawhney M, Bastarache S, Belyea E, Shea R, Armstrong W, Stewart I, Fitzgerald P (2004) The AquaNet integrated multi-trophic aquaculture project: rationale of the project and development of kelp cultivation as the inorganic extractive component of the system. Bull - Aquac Assoc Can 104(3):11–18Google Scholar
  22. Chopin T et al (2008a) Mussels and kelps help salmon farmers reduce pollution. SeaWeb Vol 1, No2, 3 July. http://www.unbsj.ca/sase/biology/chopinlab/articles/files/2008.07.Seaweb.pdf. Accessed 10 May 2010
  23. Chopin T, Robinson SMC, Troell M, Neori A, Buschmann AH, Fang J (2008b) Multitrophic integration for sustainable marine aquaculture: 2463–2475. In: Jørgensen SE, Fath BD (eds) The encyclopedia of ecology, ecological engineering (Vol. 3). Elsevier, OxfordGoogle Scholar
  24. Chung IK, Oak JH, Park K-S, Kim JG (2010) Pilot implementation of the coastal CO2 removal belt (ccrb) in Korea. Book of Abstracts p 56. 20th International Seaweed Symposium, Ensenada, Mexico 20–26 FebruaryGoogle Scholar
  25. Contreras D, Rodrıguez J, Freer J, Schwederski B, Kaim W (2007) Enhanced hydroxyl radical production by dihydroxybenzene driven Fenton reactions: implications for wood biodegradation. J Biol Inorg Chem 12:1055–1061CrossRefGoogle Scholar
  26. Copenhagen Climate Conference (2009) http://www.copenhagenclimatecouncil.com. Accessed 10 May 2010
  27. Critchley A, Ohno M, Largo D (2006) The seaweed resources of the world. A CD-rom project. In: Critchley A, Ohno M, Largo D (eds). ETI, Amsterdam The NetherlandsGoogle Scholar
  28. Doubet RS, Quatrano RS (1982) Isolation of marine bacteria capable of producing specific lyases for alginate degradation. Appl Environ Microbiol 44:3754–756Google Scholar
  29. Doucha J, Straka F, Livansky K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor thin-layer photobioreactor. J Appl Phycol 17:403–412CrossRefGoogle Scholar
  30. Druehl LD, Baird R, Lindwall A, Lloyd KE, Pakula S (1988) Longline cultivation of some Laminariaceae in British Columbia, Canada. Aquac Fish Manage 19:253–263Google Scholar
  31. Dyrset N, Lystad KQ, Levine DW (1994) Development of a fermentation process for the production of an alginate G-lyase from Klebsiella pneumoniae. Appl Microbiol Biotechnol 41:523–530CrossRefGoogle Scholar
  32. EPA (2003) National Environmental Monitoring Programme for Transitional, Coastal and Marine Waters, Environmental Protection AgencyGoogle Scholar
  33. FAO (1997) Renewable biological systems for alternative sustainable energy production. Food and Agriculture Organization of the United Nations (FAO), Agricultural Services Bulletin - 128Google Scholar
  34. FAO (2004) Use of phosphate rocks for sustainable Agriculture. FAO Fertilizerand Plant Nutrition Bulletin 13, 2004. http://www.fao.org/docrep/007/y5053e/y5053e06.htm Accessed 10 May 2010
  35. FAO (2010) Fishery Statistical Collections Global Aquaculture Production. http://www.fao.org/fishery/statistics/global-aquaculture-production/en. Accessed 24 September 2010
  36. Fletcher RL (1996) The occurrence of “green tides”—a review. Marine benthic vegetation: recent changes and the effects of eutrophication. W. S. A. P. H. Nienhuis. Springer, Berlin, pp 7–43Google Scholar
  37. F.O. Licht (2009) World Ethanol and Biofuels Report, 7(18):365Google Scholar
  38. Fortman JL, Chhabra S, Mukhopadhyay A, Chou H, Lee TS, Steen E, Keasling JD (2008) Biofuels alternatives to ethanol: pumping the microbial well. Trends Biotechnol 26:375–381CrossRefGoogle Scholar
  39. Gao K, McKinley KR (1994) Use of macroalgae for marine biomass production and CO2 remediation: a review. J Appl Phycol 6:45–60CrossRefGoogle Scholar
  40. Global Warming (2009) http://www.globalwarming.org. Accessed 14 September, 2009
  41. Gordon JCD (1983) Some notes on small kelp forest fish collected from Saccorhiza polyschides bulbs on the Isle of Cumbrae Scotland. Ophelia 22:173–183Google Scholar
  42. GRFA (2010) Global Renewable Fuels Alliance. http://www.globalrfa.org. Accessed 8th May, 2010
  43. Guiry MD, Guiry GM (2009) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org; searched on 20 December 2009.
  44. Hernández-González MC, Buschmann AH, Cifuentes M, Correa JA, Westermeier R (2007) Vegetative propagation of the carrageenophytic red alga Gigartina skottsbergii Setchell et Gardner: indoor and field experiments. Aquaculture 262:120–128CrossRefGoogle Scholar
  45. Honya M, Kinoshita T, Ishikawa M, Mori H, Nisizawa K (1993) Monthly determination of alginate M/G ratio, mannitol and minerals in cultivated Laminaria japonica. Nippon Suisan Gakkaishi 59(2):295–299CrossRefGoogle Scholar
  46. Horn SJ, Aasen IM, Østgaard K (2000a) Production of ethanol from mannitol by Zymobacter palmae. J Ind Microbiol Biotechnol 24:51–57CrossRefGoogle Scholar
  47. Horn SJ, Aasen IM, Østgaard K (2000b) Ethanol production from seaweed extract. J Ind Microbiol Biotechnol 25:249–254CrossRefGoogle Scholar
  48. Huntley ME, Redalje DG (2007) CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig Adapt Strateg Glob Change 12:573–608CrossRefGoogle Scholar
  49. ISC (2009) Seasonal analysis in 10 commercial edible seavegetables of the Irish west coast. Internal report; Irish Seaweed Centre, National University of Ireland, GalwayGoogle Scholar
  50. Kaas R (2006) The seaweed resources of France. In: Critchly AT, Ohno M, Largo DB (eds) The seaweed resources of the world. Interactive CD ROM, ETI, The NetherlandsGoogle Scholar
  51. Kain JM, Dawes CP (1987) Useful European seaweeds: past hopes and present cultivation. Hydrobiologia 151(152):173–181CrossRefGoogle Scholar
  52. Kain JM, Holt TJ, Dawes CP (1990) European Laminariales and their cultivation. In: Yarish C, Penniman CA, Van Patten P (eds) Economically important marine plants of the atlantic: their biology and cultivation. Connecticut Sea Grant College Program, Groton, pp 95–111Google Scholar
  53. Kelly E (2005) The role of kelp in the marine environment. Irish Wildlife Manuals, No. 17. National Parks and Wildlife Service, Department of Environment, Heritage and Local Government, Dublin, IrelandGoogle Scholar
  54. Kelly M, Dworjanyn S (2008) The potential of marine biomass for anaerobic biogas production. The Crown Estate, 103 pages, LondonGoogle Scholar
  55. Klinke HB, Thomsen A, Ahring BK (2001) Potential inhibitors from wet oxidation of wheat straw and their effect on growth and ethanol production by Thermoanaerobacter mathranii. Appl Microbiol Biotechnol 57:631–638CrossRefGoogle Scholar
  56. Kraan S (2008) Sargassum muticum (Yendo) Fensholt in Ireland: an invasive species on the move. J Appl Phycol 20:825–832CrossRefGoogle Scholar
  57. Kraan S, Guiry MD (2001) Strain selection in the edible brown seaweed Alaria esculenta: Genetic fingerprinting and hybridization studies under laboratory conditions, Marine Resource Series No. 18, Marine Institute, Dublin 2001Google Scholar
  58. Kraan S, Guiry MD (2006) The seaweed resources of Ireland. In: Critchley A, Ohno M, Largo D (eds) Seaweed resources of the worldm, A CD-rom project. ETI, AmsterdamGoogle Scholar
  59. Kraan S, Verges Tramullas A, Guiry MD (2000) The edible brown seaweed Alaria esculenta (Phaeophyceae, Laminariales): hybridisation, growth and genetic comparisons of six Irish populations. J Appl Phycol 12:577–583CrossRefGoogle Scholar
  60. Lahaye M (1998) NMR spectroscopic characterisation of oligosaccharides from two Ulva rigida ulvan samples (Ulvales, Chlorophyta) degraded by a lyase. Carbohydr Res 314(1–2):1–12CrossRefGoogle Scholar
  61. Lahaye M, Ray B (1996) Cell-wall polysaccharides from the marine green alga Ulva rigida (Ulvales, Chlorophyta)—NMR analysis of ulvan oligosaccharides. Carbohydr Res 283:161–173CrossRefGoogle Scholar
  62. Lahaye M, Robic A (2007) Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules 8(6):1765–1774CrossRefGoogle Scholar
  63. Leblanc C, Colin C, Cosse A, Delage L, La Barre S, Morin P, Fiévet B, Voiseux C, Ambroise Y, Verhaeghe E, Amouroux D, Donard O, Tessier E, Potin P (2006) Iodine transfers in the coastal marine environment: the key role of brown algae and of their vanadium-dependent haloperoxidases. Biochimie 88:1773–1785CrossRefGoogle Scholar
  64. Lee SK, Chou H, Ham TS, Lee TS, Keasling JD (2008) Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 19:556–563CrossRefGoogle Scholar
  65. Lorentsen S-H, Gremillet D, Nymoen GH (2004) Annual variation in diet of breeding Great Cormorants: does it reflect varying recruitment of Gadoids? Waterbirds 27:161–169CrossRefGoogle Scholar
  66. Lüning K (1990) Seaweeds, their environment, biogeography and ecophysiology. In: Yarish C, Kirkman H (eds). Wiley, New York, 527 ppGoogle Scholar
  67. Lüning K, Pang S (2003) Mass cultivation of seaweeds: current aspects and approaches. J Appl Phycol 15:115–119CrossRefGoogle Scholar
  68. Mann KL (1982) Ecology of coastal waters: a systems approach. University of California Press, BerkeleyGoogle Scholar
  69. McCaughren S (2008) Sunday Business Post. http://www.sbpost.ie/post/pages/p/story.aspx-qqqt=IRELAND-qqqm=news-qqqid=36121-qqqx=1.asp. Accessed 8 September 2009
  70. McHugh DJ (2003) A guide to the seaweed industry. FAO Fisheries Technical Paper No 441, 105 ppGoogle Scholar
  71. Mohammed AI, Fredriksen S (2004) Production, respiration and exudation of dissolved organic matter by the kelp Laminaria hyperborea along the west coast of Norway. J Mar Biol Ass UK 84:887–894CrossRefGoogle Scholar
  72. Morand P, Carpentier B, Charlier RH, Mazé J, Orlandini M, Plunkett BA, de Waart J (1991) Bioconversion of seaweeds. In: Seaweed resources in Europe, uses and potential. Guiry MD, Blunden G (eds). Wiley, Chichester, 432 pp.Google Scholar
  73. Muraoke D (2004) Seaweed resources as a source of carbon fixation. Bull Fish Res Agen. Supplement No. 1:59–63Google Scholar
  74. Neori A, Shpigel M, Ben-Ezra D (2000) A sustainable integrated system for culture of fish, seaweed and abalone. Aquaculture 186:279–291CrossRefGoogle Scholar
  75. Notoya M (2010) Production of biofuel by macroalgae with preservation of marine resources and environment. In: Israel A, Einav R, Seckbach J (eds), 2010, Seaweeds and their Role in Globally Changing Environments. Series: Cellular Origin, Life in Extreme Habitats and Astrobiology, Vol. 15. Springer ,480 pagesGoogle Scholar
  76. Ohno M, Largo DB (2006) The seaweed resources of Japan. In: Critchly AT, Ohno M, Largo DB (eds) The seaweed resources of the world. Interactive CD ROM. ETI, The NetherlandsGoogle Scholar
  77. Peak Oil (2009) http://www.peakoil.com. Accessed 14 September, 2009
  78. Percival E, McDowell R (1967) Chemistry and enzymology of marine algal polysaccharides. Academic, LondonGoogle Scholar
  79. Pérez R, Kaas R, Barbaroux O (1984) Culture expérimentales de l’algue Undaria pinnatifida sur les côtes de France. Science et Pêche 343:3–15Google Scholar
  80. Pérez R, Kaas R, Campello F, Arbault S, Barbaroux O (1992) La culture des algues marines dans le monde. In: Service de la Documentation et des Publications (SDP). IFREMER, PlouzaneGoogle Scholar
  81. Peteiro C, Freire O (2009) Effect of outplanting time on commercial cultivation of kelp Laminaria saccharina at the southern limit in the Atlantic coast, N.W. Spain Chinese Journal of Oceanology and Limnology 27(1):54–60Google Scholar
  82. Qin S, Jiang P, Tseng C (2005) Transforming kelp into a marine bioreactor. Trends Biotechnol 23(5):5–10CrossRefGoogle Scholar
  83. Reddy CRK, Jha B, Fujita Y, Ohno M (2008) Seaweed micropropagation techniques and their potentials: an overview. J Appl Phycol 20:609–617CrossRefGoogle Scholar
  84. Reith JH, Deurwaarder EP, Hemmes K, Curvers APWM, Kamermans P, Brandenburg W, Zeeman G (2005) BIO-OFFSHORE, Grootschalige teelt van zeewieren in combinatie met offshore windparken in de Noordzee. ECN-C--05-008 ECN projectnummer 8.20300.137 pp.Google Scholar
  85. Reith H, Huijgen W, van Hal J, Lenstra J (2009) Seaweed potential in the Netherlands. ECN Biomass, Coal and Environmental Research Kick-off Meeting EOS-LT project Seaweed Biorefinery 24 Sept. 2009, AmsterdamGoogle Scholar
  86. Roesijadi G, Copping AE, Huesemann MH, Forster J, Benemann JR (2008) Techno-Economic Feasibility Analysis of Offshore Seaweed Farming for Bioenergy and Biobased Products. Independent Research and Development Report. IR Number: PNWD-3931. Battelle Pacific Northwest Division. Jane Thomas, IAN, UMCES.Google Scholar
  87. Ross A, Jones JM, Kubacki ML, Bridgeman TG (2008) Classification of macroalgae as fuel and its thermochemical behaviour. Bioresour Technol 6494–6504Google Scholar
  88. Schuenhoff A, Shpigel M, Lupatschb I, Ashkenazib A, Msuyab FE, Neori A (2003) A semi-recirculating, integrated system for the culture of fish and seaweed. Aquaculture 221:167–181CrossRefGoogle Scholar
  89. Schultze K, Janke K, Kruess A, Weidermann W (1990) The macrofauna and macroflora associated with Laminaria digitata and L. hyperborea at the island of Helgoland (German Bight, North Sea). Helgolander Meeresuntersuchungen 44:39–51Google Scholar
  90. Shaffer S (2003) Preferential use of nearshore kelp habitats by juvenile salmon and forage fish. Proceedings of the Georgia Basin/Puget Sound Research Conference. 11 ppGoogle Scholar
  91. Sjøtun K, Lorentsen S-H (2003) Kelp forest (Laminaria hyperborea) as habitat for juvenile gadoids. Poster presented at the 3 rd European Phycological Congress, Belfast, North-Ireland, 21–26 July, 2003Google Scholar
  92. Steneck R, Vavrinec J, Leland A (2004) Accelerating trophic-level disfunction in kelp forest ecosystems of the western north Atlantic. Ecosystems 7:323–332CrossRefGoogle Scholar
  93. Titlyanov EA, Titlyanova TV, Kadel P, Lüning K (2006) New methods of obtaining plantlets and tetraspores from fragments and cell aggregates of meristematic and submeristematic tissue of the red alga Palmaria palmata. J Exp Mar Biol Ecol 339:55–64CrossRefGoogle Scholar
  94. Thomas DN (2002) Seaweeds. Natural History Museum, LondonGoogle Scholar
  95. Torzillo G, Pushparaj B, Bocci F, Balloni W, Materassi R, Florenzano G (1986) Production of Spirullina biomass in closed photobioreactors. Biomass 11:61–64CrossRefGoogle Scholar
  96. Troell M, Joyce A, Chopin T, Neori A, Buschmann AH, Fang J-G (2009) Ecological engineering in aquaculture—Potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture 297:1–9CrossRefGoogle Scholar
  97. Tseng CK (1987) Some remarks on the kelp cultivation industry of China. In: Bird KT, Benson PH (eds) Seaweed cultivation for renewable resources. Developments in aquaculture and fisheries science, 16. Elsevier, Amsterdam, pp 147–156Google Scholar
  98. Valiela I, McClelland J, Hauxwell J, Behr J, Hersh D (1997) Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnol Oceanogr 42:1105–1118CrossRefGoogle Scholar
  99. van Maris AJA, Abbot DA, Bellisimi E, van den Brink J, Kuyper M, Luttik MAH, Wisselink HW, Scheffers WA, van Dijken JP, Pronk JT (2006) Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Leeuwenhoek 90:391–418CrossRefGoogle Scholar
  100. Velimirov B, Field JG, Griffiths CL, Zoutendyk P (1977) The ecology of kelp bed communities in the Benguela upwelling system. Analysis of biomass and spatial distribution. Helgol Wiss Meeresunter 30:495–518CrossRefGoogle Scholar
  101. von Horn J, Sartorius C (2009) International Conference on Nutrient Recovery from Wastewater Streams. In: Ashley K, Mavinic D, Koch F. IWA, LondonGoogle Scholar
  102. Wang Y, Han F, Hu B, Li J, Yu W (2006) In vivo prebiotic properties of alginate oligosaccharides prepared through enzymatic hydrolysis of alginate. Nutr Res 26:597–603CrossRefGoogle Scholar
  103. Werner A, Kraan S (2004) Review of the potential mechanisation of kelp harvesting in Ireland. Mar Envir Health Ser (17):1–52, Marine Institute, GalwayGoogle Scholar
  104. Wijffels R (2009) Microalgae for production of bulk chemicals and biofuels. The 3 rd congress of Tsukuba 3E Forum, Tsukuba International Conference Centre, Tsukuba, Japan, 8th of August 2009Google Scholar
  105. Wu CY, Pang SJ (2006) The seaweed resources of China. In: Critchly AT, Ohno M, Largo DB (eds) The seaweed resources of the world. Interactive CD ROM, ETI, The NetherlandsGoogle Scholar
  106. Xu B, Zhang QS, Qu SC, Cong YZ, Tang XX (2008) Introduction of a seedling production method using vegetative gametophytes to the commercial farming of Laminaria in China. J Appl Phycol 20:1–9Google Scholar
  107. Yarish C, Pereira R (2008) Mass production of marine macroalgae. In: Jørgensen SE, Fath BD (Editor-in-Chief), Ecological Engineering. Vol. [3] of Encyclopedia of Ecology, 5 vols. pp [2236–2247] Elsevier, OxfordGoogle Scholar
  108. Yung-Bum S, Youn-Woo L, Chun-Han L, Hack-Chul Y (2010) Red algae and their use in papermaking. Bioresour Technol 101:2549–2553CrossRefGoogle Scholar
  109. Zhang QS, Qu SC, Cong YZ, Luo SJ, Tang X-X (2008) High throughput culture and gametogenesis induction of Laminaria japonica gametophyte clones. J Appl Phycol 20:205–211CrossRefGoogle Scholar
  110. Zverlov VV, Berezina OV, Velikodvirskaya GA, Schwarz WH (2006) Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery. Appl Microbiol Biotechnol 71:587–597CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Ocean Harvest Technology Ltd.GalwayIreland

Personalised recommendations