CO2-fertilization and potential future terrestrial carbon uptake in India

  • Govindasamy BalaEmail author
  • Ranjith Gopalakrishnan
  • Mathangi Jayaraman
  • Ramakrishna Nemani
  • N. H. Ravindranath
Original Article


There is huge knowledge gap in our understanding of many terrestrial carbon cycle processes. In this paper, we investigate the bounds on terrestrial carbon uptake over India that arises solely due to CO 2 -fertilization. For this purpose, we use a terrestrial carbon cycle model and consider two extreme scenarios: unlimited CO2-fertilization is allowed for the terrestrial vegetation with CO2 concentration level at 735 ppm in one case, and CO2-fertilization is capped at year 1975 levels for another simulation. Our simulations show that, under equilibrium conditions, modeled carbon stocks in natural potential vegetation increase by 17 Gt-C with unlimited fertilization for CO2 levels and climate change corresponding to the end of 21st century but they decline by 5.5 Gt-C if fertilization is limited at 1975 levels of CO2 concentration. The carbon stock changes are dominated by forests. The area covered by natural potential forests increases by about 36% in the unlimited fertilization case but decreases by 15% in the fertilization-capped case. Thus, the assumption regarding CO2-fertilization has the potential to alter the sign of terrestrial carbon uptake over India. Our model simulations also imply that the maximum potential terrestrial sequestration over India, under equilibrium conditions and best case scenario of unlimited CO2-fertilization, is only 18% of the 21st century SRES A2 scenarios emissions from India. The limited uptake potential of the natural potential vegetation suggests that reduction of CO2 emissions and afforestation programs should be top priorities.


Carbon sequestration Climate change CO2 fertilization Forests Potential vegetation Terrestrial carbon cycle model 



Research for this publication was conducted under the project “Impact of climate change on tropical forest ecosystems and biodiversity in India”, funded by the Royal Norwegian Embassy, in collaboration with CICERO, Oslo. We thank the Royal Norwegian Embassy and CICERO for their support. We thank Dr. Devaraju for his help in making the schematic diagram for this paper.


  1. Bala G, Caldeira K, Mirin A et al (2005) Multiceutury changes to the global climate and carbon cycle: results from a coupled climate and carbon cycle model. J Climate 18(21):4531–4544CrossRefGoogle Scholar
  2. Bala G, Caldeira K, Mirin A et al (2006) Biogeophysical effects of CO2 fertilization on global climate. Tellus Ser B 58(5):620–627CrossRefGoogle Scholar
  3. Bonan GB (2008) Ecological climatology. Cambridge University, New YorkGoogle Scholar
  4. Bonan GB, Levis S, Sitch S et al (2003) A dynamic global vegetation model for use with climate models: concepts and description of simulated vegetation dynamics. Glob Chang Biol 9(11):1543–1566CrossRefGoogle Scholar
  5. Cao MK, Woodward FI (1998) Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 393(6682):249–252CrossRefGoogle Scholar
  6. Cox PM, Betts RA, Jones CD et al (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408(6809):184–187CrossRefGoogle Scholar
  7. Cramer W, Bondeau A, Woodward FI et al (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob Chang Biol 7(4):357–373CrossRefGoogle Scholar
  8. Farquhar GD, Caemmerer SV, Berry JA (1980) A biochemical-model of photosynthetic Co2 assimilation in leaves of C-3 species. Planta 149(1):78–90CrossRefGoogle Scholar
  9. Foley JA, Prentice IC, Ramankutty N et al (1996) An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Glob Biogeochem Cycles 10(4):603–628CrossRefGoogle Scholar
  10. Friedlingstein P, Bopp L, Ciais P et al (2001) Positive feedback between future climate change and the carbon cycle. Geophys Res Lett 28(8):1543–1546CrossRefGoogle Scholar
  11. Friedlingstein P, Cox P, Betts R et al (2006) Climate-carbon cycle feedback analysis: results from the (CMIP)-M-4 model intercomparison. J Climate 19(14):3337–3353CrossRefGoogle Scholar
  12. Giardina CP, Ryan MG (2000) Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404(6780):858–861CrossRefGoogle Scholar
  13. Govindasamy B, Thompson S, Mirin A et al (2005) Increase of carbon cycle feedback with climate sensitivity: results from a coupled climate and carbon cycle model. Tellus Ser B 57(2):153–163CrossRefGoogle Scholar
  14. Houghton JT, Ding Y, Girggs DJ et al (eds) (2001) Climate change 2001: the scientific basis. Cambridge University Press, New YorkGoogle Scholar
  15. Khatiwala S, Primeau F, Hall T (2009) Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature 462:346–349CrossRefGoogle Scholar
  16. Knorr W (2009) Is the airborne fraction of anthropogenic emissions increasing? Geophys Res Lett 36:L21710. doi: 10.1029/2009GL040613 CrossRefGoogle Scholar
  17. Kucharik CJ, Foley JA, Delire C et al (2000) Testing the performance of a Dynamic Global Ecosystem Model: water balance, carbon balance, and vegetation structure. Glob Biogeochem Cycles 14(3):795–825CrossRefGoogle Scholar
  18. Kumar KR, Sahai AK, Kumar KK et al (2006) High-resolution climate change scenarios for India for the 21st century. Curr Sci India 90(3):334–345Google Scholar
  19. Lloyd J, Taylor JA (1994) On the temperature-dependence of soil respiration. Funct Ecol 8(3):315–323CrossRefGoogle Scholar
  20. Matthews HD, Weaver AJ, Meissner KJ (2005) Terrestrial carbon cycle dynamics under recent and future climate change. J Climate 18(10):1609–1628CrossRefGoogle Scholar
  21. McGuire AD, Sitch S, Clein JS et al (2001) Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2, climate and land use effects with four process-based ecosystem models. Glob Biogeochem Cycles 15(1):183–206CrossRefGoogle Scholar
  22. Monserud RA, Leemans R (1992) Comparing global vegetation maps with the kappa-statistic. Ecol Modell 62(4):275–293CrossRefGoogle Scholar
  23. Nakicenovic N, Swart R (eds) (2000) Special report on emissions scenarios. Cambridge University Press, New York, 570 ppGoogle Scholar
  24. Nemani RR, Keeling CD, Hashimoto H et al (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300(5625):1560–1563CrossRefGoogle Scholar
  25. Owensby CE, Ham JM, Knapp AK et al (1999) Biomass production and species composition change in a tallgrass prairie ecosystem after long-term exposure to elevated atmospheric CO2. Glob Change Biol 5(5):497–506CrossRefGoogle Scholar
  26. Pacala SW, Hurtt GC, Baker D et al (2001) Consistent land- and atmosphere-based US carbon sink estimates. Science 292(5525):2316–2320CrossRefGoogle Scholar
  27. Polley HW, Johnson HB, Marino BD et al (1993) Increase in C3 plant water-use efficiency and biomass over glacial to present Co2 concentrations. Nature 361(6407):61–64CrossRefGoogle Scholar
  28. Prentice IC, Farquhar GD, Fasham MJR et al (2001) The carbon cycle and atmospheric carbon dioxide. In: Houghton JT et al (eds) Climate change 2001: the scientific basis. Cambridge University Press, New YorkGoogle Scholar
  29. Ramankutty N, Foley JA (1999) Estimating historical changes in global land cover: croplands from 1700 to 1992. Glob Biogeochem Cycles 13(4):997–1027CrossRefGoogle Scholar
  30. Ravindranath NH, Joshi NV, Sukumar R et al (2006) Impact of climate change on forests in India. Curr Sci India 90(3):354–361Google Scholar
  31. Ravindranath NH, Chaturvedi RK, Murthy IK (2008) Forest conservation, afforestation and reforestation in India: implications for forest carbon stocks. Curr Sci India 95(2):216–222Google Scholar
  32. Schimel DS, House JI, Hibbard KA et al (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414(6860):169–172CrossRefGoogle Scholar
  33. Shukla PR (2006) India’s GHG emission scenarios: aligning development and stabilization paths. Curr Sci India 90:384–395Google Scholar
  34. Thompson SL, Govindasamy B, Mirin A et al (2004) Quantifying the effects of CO2-fertilized vegetation on future global climate and carbon dynamics. Geophys Res Lett 31(23):L23211. doi: 10.1029/2004GL021239 CrossRefGoogle Scholar
  35. Zeng N, Qian HF, Munoz E et al (2004) How strong is carbon cycle-climate feedback under global warming? Geophys Res Lett 31(20)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Govindasamy Bala
    • 1
    • 2
    Email author
  • Ranjith Gopalakrishnan
    • 3
  • Mathangi Jayaraman
    • 3
  • Ramakrishna Nemani
    • 4
  • N. H. Ravindranath
    • 3
  1. 1.Divecha Center for Climate ChangeIndian Institute of ScienceBangaloreIndia
  2. 2.Center for Atmospheric and Oceanic SciencesIndian Institute of ScienceBangaloreIndia
  3. 3.Center for Sustainable TechnologiesIndian Institute of ScienceBangaloreIndia
  4. 4.NASA Ames Research CenterMoffett FieldUSA

Personalised recommendations