Methane Emissions from Large Dams as Renewable Energy Resources: A Developing Nation Perspective

  • Ivan B. T. Lima
  • Fernando M. Ramos
  • Luis A. W. Bambace
  • Reinaldo R. Rosa
Original Article

Abstract

By means of a theoretical model, bootstrap resampling and data provided by the International Commission On Large Dams (ICOLD (2003) World register of dams. http://www.icold-cigb.org) we found that global large dams might annually release about 104 ± 7.2 Tg CH4 to the atmosphere through reservoir surfaces, turbines and spillways. Engineering technologies can be implemented to avoid these emissions, and to recover the non-emitted CH4 for power generation. The immediate benefit of recovering non-emitted CH4 from large dams for renewable energy production is the mitigation of anthropogenic impacts like the construction of new large dams, the actual CH4 emissions from large dams, and the use of unsustainable fossil fuels and natural gas reserves. Under the Clean Development Mechanism of the Kyoto Protocol, such technologies can be recognized as promising alternatives for human adaptations to climate change concerning sustainable power generation, particularly in developing nations owning a considerable number of large dams. In view of novel technologies to extract CH4 from large dams, we estimate that roughly 23 ± 2.6, 2.6 ± 0.2 and 32 ± 5.1 Tg CH4 could be used as an environmentally sound option for power generation in Brazil, China and India, respectively. For the whole world this number may increase to around 100 ± 6.9 Tg CH4.

Keywords

Emission mitigation MDL Methane recovery Renewable energy Reservoir Spillway Turbine 

References

  1. Abril G, Guérin F, Richard S et al (2005) Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana). Global Biogeochem Cycles 19:doi:10.1029/2005GB002457Google Scholar
  2. Bambace LAW, Ramos FM, Lima IBT et al (2007) Mitigation and recovery of methane emissions from tropical hydroelectric dams. Energy (in press) (http://www.sciencedirect.com/science/article/B6V2S-4M9H3J1-2/2/3809fd6c7a60d2ee3bfa512378427077)
  3. Bartolome LJ, de Wet C, Mander H et al (2000) Displacement, resettlement, rehabilitation, reparation and development, Thematic Review I.3 prepared as an input to the World Commission on Dams, Cape Town, http://www.dams.orgGoogle Scholar
  4. Bastviken D, Cole J, Pace M et al (2004) Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochem Cycles 18:doi:10.1029/2004GB002238Google Scholar
  5. Berkamp G, McCartney M, Dugan P et al (2000) Dams, ecosystem functions and environmental restoration, Thematic Review II.1 prepared as an input to the World Commission on Dams, Cape Town, http://www.dams.orgGoogle Scholar
  6. Bousquet P, Ciais P, Miller JB et al (2006) Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443:439–443CrossRefGoogle Scholar
  7. Dlugokencky EJ, Houweling S, Bruhwiler L et al (2003) Atmospheric methane levels off: temporary pause or a new steady-state? Geophys Res Lett 30:doi: 10.1029/2003GL018126Google Scholar
  8. Dlugokencky EJ, Masarie KA, Lang PM et al (1998) Continuing decline in the growth rate of the atmospheric methane burden. Nature 393:447–450CrossRefGoogle Scholar
  9. Dlugokencky EJ, Lang PM, Masarie KA (2006) Atmospheric methane data at South Pole Station (89°59′ S, 24°48′ W, 2810 m), Antarctica. Thomas J. Conway, NOAA/ESRL Global Monitoring Division. On-line at the World Data Centre for Greenhouse Gases – Global Atmosphere Watch. http://gaw.kishou.go.jp/wdcgg.htmlGoogle Scholar
  10. Duchemin E, Lucotte M, Canuel R et al (2006) Reservoir emissions upon ice break-up: first assessment of methane and carbon dioxide emissions from shallow and deep zones of boreal reservoirs upon ice break-up. Lakes Reservoirs Res Manage 11:9–19CrossRefGoogle Scholar
  11. EPE (2006) Balanço Energético Nacional 2006: Ano base 2005. Relatório final/Ministério de Minas e Energia. Empresa de Pesquisa Energética, Rio de Janeiro. p. 188. http://ben.epe.gov.br/downloads/BEN2006_Versao_Completa.pdfGoogle Scholar
  12. Etheridge DM, Steele LP, Francey RJ et al (2002) Historical CH4 mixing ratios from Law Dome (Antarctica) and Summit (Greenland) ice cores. Historical CH4 record from DE08, DE08-2 and DSS ice cores (Antarctica). In: Trends: a compendium of data on global change. On line at the Carbon Dioxide Information Analysis Center. http://cdiac.esd.ornl.gov/trends/atm_meth/lawdome_meth.htmlGoogle Scholar
  13. Etiope G (2004) New directions: GEM – geologic emissions of methane, the missing source in the atmospheric methane budget. Atmos Environ 38:3099–3100CrossRefGoogle Scholar
  14. Fearnside PM (2002) Greenhouse gas emissions from a hydroelectric reservoir (Brazil’s Tucuruí Dam) and the energy policy implications. Water Air Soil Pollut 133:69–96CrossRefGoogle Scholar
  15. Fearnside PM (2004) Greenhouse gas emissions from hydroelectric dams: controversies provide a springboard for rethinking a supposedly clean energy source. Clim Change 66:1–8CrossRefGoogle Scholar
  16. Fearnside PM (2005a) Do hydroelectric dams mitigate global warming? The case of Brazil’s Curuá-Una Dam. Mitig Adapt Strat Glob Change 10:675–691CrossRefGoogle Scholar
  17. Fearnside PM (2005b) Brazil’s Samuel Dam: lessons for hydroelectric development policy and the environment in Amazonia. Environ Manage 35:1–19CrossRefGoogle Scholar
  18. Guérin F, Abril G (2004) Kinetics of methane oxidation in a tropical reservoir. Geophys Res Abstracts 6:03922Google Scholar
  19. Guérin F, Abril G, Richard S et al (2006) Methane and carbon dioxide emissions from tropical reservoirs: significance of downstream rivers. Geophys Res Lett 33:doi:10.1029/2006GL027929Google Scholar
  20. Hansen J, Sato M (2004) Greenhouse gas growth rates. Proc Natl Acad Sci 101:16109–16114CrossRefGoogle Scholar
  21. Houghton RA, Hackler JL (2002) Carbon flux to the atmosphere from land-use changes. In: Trends: A compendium of data on global change. Carbon dioxide information analysis center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, USA. http://cdiac.ornl.gov/trends/landuse/houghton/houghton.htmlGoogle Scholar
  22. International Commission On Large Dams (ICOLD) 2003 (2003) World register of dams. http://www.icold-cigb.orgGoogle Scholar
  23. IPCC (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual, Intergovernmental Panel on Climate Change. Workbook (Volume 2). Module 1, Energy. p. 22. http://www.ipcc-nggip.iges.or.jp/public/gl/guidelin/ch1wb1.pdfGoogle Scholar
  24. Kemenes A, Forsberg BR, Melack JM (2006) Gas release below Balbina dam. In: Proceedings of 8 ICSHMO, Foz do Iguaçu, Brazil. April 24–28, 2006, INPE, pp 663–667Google Scholar
  25. Keppler F, Hamilton JTG, Brass M et al (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187–191CrossRefGoogle Scholar
  26. Lelieveld J, Crutzen PJ, Dentener FJ (1998) Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus-B 50:128–150CrossRefGoogle Scholar
  27. Lelieveld J (2006) A nasty surprise in the greenhouse. Nature 443:405–406CrossRefGoogle Scholar
  28. Lima IBT (2005) Biogeochemical distinction of methane releases from two Amazon hydroreservoirs. Chemosphere 59:1697–702CrossRefGoogle Scholar
  29. Matsumoto M, Nishimura T (1998) Mersenne twister: a 623-dimensionally equidistributed uniform pseudorandom number generator. ACM Trans. Model Comput Simul 8:3–30CrossRefGoogle Scholar
  30. Melack JM, Hess LL, Gastil M et al (2004) Regionalization of methane emissions in the Amazon basin with microwave remote sensing. Global Change Biol 10:530–544CrossRefGoogle Scholar
  31. Ramos FM, Lima IBT, Rosa RR et al (2006) Extreme event dynamics in methane ebullition fluxes from tropical reservoirs. Geophys Res Lett 33:doi:10.1029/2006GL027943Google Scholar
  32. Ramos FM, Bambace LAW, Lima IBT et al (2007) Methane stocks in tropical hydropower reservoirs as a potential energy source. Clim Change (under review, second revision)Google Scholar
  33. Ramaswamy V (2001) In: Houghton JT et al (eds) Climate change 2001: The scientific basis. Cambridge University Press, pp 349–416Google Scholar
  34. Rosa LP, Santos MA (2000) Certainty and uncertainty in the science of greenhouse gas emissions from hydroelectric reservoirs. Thematic Review II.2 prepared as an input to the World Commission on Dams, Cape Town, http://www.dams.orgGoogle Scholar
  35. Ruddiman WF (2003) The anthropogenic era began thousands of years ago. Clim Change 61:261–293CrossRefGoogle Scholar
  36. Ruddiman WF, Vavrus SJ, Kutzbach JE (2005) A test of the overdue-glaciation hypothesis. Quat Sci Reviews 24:1–10CrossRefGoogle Scholar
  37. Saint Louis VL, Kelly CA, Duchemin E et al (2000) Reservoir surface as sources of greenhouse gases to the atmosphere: a global estimate. Bioscience 50:766–775CrossRefGoogle Scholar
  38. Shindell DT, Faluvegi G, Bell N et al (2005) An emissions-based view of climate forcing by methane and tropospheric ozone. Geophys Res Lett 32:doi:10.1029/2004GL021900Google Scholar
  39. Soumis N, Lucotte M, Canuel R et al (2005) Hydroelectric reservoirs as anthropogenic sources of greenhouse gases. In: Lehr JH, Keeley J (eds) Water encyclopedia: Surface and agricultural water. Wiley-Interscience, Hoboken, N. J., pp 203–210Google Scholar
  40. Stern DI, Kaufmann RK (1996) Estimates of global anthropogenic methane emissions 1860–1993. Chemosphere 33:159–176. (See also http://cdiac.ornl.gov/trends/meth/ch4.htm)Google Scholar
  41. Wuebbles DJ, Hayhoe K (2002) Atmospheric methane and global change. Earth-Science Rev 57:177–210CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2007

Authors and Affiliations

  • Ivan B. T. Lima
    • 1
  • Fernando M. Ramos
    • 1
  • Luis A. W. Bambace
    • 1
  • Reinaldo R. Rosa
    • 1
  1. 1.National Institute for Space Research (INPE)S. J. CamposBrazil

Personalised recommendations