The Role of Wood Material for Greenhouse Gas Mitigation

  • L. GustavssonEmail author
  • R. Madlener
  • H.-F. Hoen
  • G. Jungmeier
  • T. Karjalainen
  • S. KlÖhn
  • K. Mahapatra
  • J. Pohjola
  • B. Solberg
  • H. Spelter


Based on an interdisciplinary perspective the role of wood as a carbon sink, as a multi-purpose material, and as a renewable energy source for the net reduction of greenhouse gases is discussed. We synthesize aspects from engineering, natural and social sciences to better understand the role of wood substitution in CO2 mitigation. We also formulate some recommendations on filling knowledge gaps that could be useful for policy making regarding how wood substitution could be further expanded. There are sufficient wood resources to substantially increase the use of wood for material and energy purposes. However, a number of factors hinder a wider use of wood for energy and material purposes. Furthermore, an analysis of wood substitution is a very complex issue, since the substitution influencing factors are to be found along the entire wood supply chain and involve several industries, socio-economic and cultural aspects, traditions, price dynamics, and structural and technical change. To improve the knowledge about wood as a substitute for other resources and the implications, it would be helpful to better integrate research from different disciplines on the subject and to cover different scales from a project to an economy-wide level.


wood bioenergy substitution greenhouse gas emission policy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Apps, M.J., Kurz, W.A., Beukema, S.J. and Bhatti, J.S.: 1999, ‘Carbon budget of the Canadian forest product sector’, Environmental Science and Policy 2(1), 25–41.CrossRefGoogle Scholar
  2. Bass, F.M.: 1969, ‘A new product growth model for consumer durables’, Management Science 13(5), 215–227.CrossRefGoogle Scholar
  3. Becker, G.: 1992, ‘Die Bedeutung des Roh- und Werkstoffes Holz für die Zukunft sichern – eine Herausforderung für die Holzforschung – (To secure the future importance of wood as raw material – a challenge for wood research)’, Forstarchiv 63, 80–84 (in German).Google Scholar
  4. Bengtson, A.: 2003, ‘Framing technological development in a concrete context – the use of wood in the Swedish construction industry. Ph.D. thesis, Department of Business Studies, Uppsala University, Uppsala, Sweden.Google Scholar
  5. Bolkesjø, T.F., Trømborg, E. and Solberg, B.: 2004, Forest-based bioenergy use in Norway to 2010 – potential and impacts on prices and production in the forest sector. In T.F. Bolkesjø (ed.), Modeling supply, demand and trade in the Norwegian forest sector. Dr. Scient. thesis 2004:10. Agricultural University of Norway.Google Scholar
  6. Böhringer, C.: 1998, ‘The synthesis of bottom-up and top-down in energy policy modelling’, Energy Economics 20(3), 233–248.CrossRefGoogle Scholar
  7. Börjesson, P. and Gustavsson, L.: 2000, ‘Greenhouse gas balances in building construction: wood versus concrete from life-cycle and forest land-use perspectives’, Energy Policy 28(9), 575–588.CrossRefGoogle Scholar
  8. Börjesson, P., Gustavsson, L., Christersson, L. and Linder, S.: 1997, ‘Future production and utilization of biomass in Sweden: Potentials and CO2 mitigation’, Biomass and Bioenergy 13(4), 399–412.CrossRefGoogle Scholar
  9. Breuss, F. and Steininger, K.: 1998, ‘Biomass energy use to reduce climate change: A general equilibrium analysis for Austria’, Journal of Policy Modeling 20(4), 513–535.CrossRefGoogle Scholar
  10. Brown, S., Sathaye, J., Cannell, M. and Kauppi, P.E.: 1996, ‘Management of forests for mitigation of greenhouse gas emissions’, In R.T. Watson, M.C. Zinyowera, R.H. Moss and D.J. Dokken (eds.), Climate Change 1995 – Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses. Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, pp. 773–797.Google Scholar
  11. Burrows, J. and Sannes, B. (eds.): 1998, The Competitive Climate for Wood Products and Paper Packaging; the Factors Causing Substitution with Emphasis on Environmental Promotions. The joint FAO/ECE team of public relations specialists in the forest and forest industries sector, 205 pp.Google Scholar
  12. Burschel, P., Kuersten, E. and Larson, B.C.: 1993, Die Rolle von Wald und Forstwirtschaft im Kohlenstoffhaushalt. Eine Betrachtung für die Bundesrepublik Deutschland. (Role of Forests and forestry in the carbon cycle; a try-out for Germany). Forstliche Forschungsberichte München, Schriftenreihe der Forstwissenschaftlichen Fakultät der Universität München und der Bayerischen Forstlichen Versuchs- und Forschungsanstalt, 126, 135 pp.Google Scholar
  13. de la Roche, I., O'Conner, J. and Tetu, P.: 2003, ‘Wood products and sustainable construction. Special paper in congress proceedings’, XII World Forestry Congress, 21–28 September 2003, Quebec City, Canada.Google Scholar
  14. EU: 1999, Council Directive on the Landfill of Waste. Council of the European Union, 1999/31/EC, Brussels.Google Scholar
  15. EU: 2003, Draft Discussion Document for the Ad Hoc Meeting on Biowastes and Sludges, 15–16 January 2004. Brussels, European Commission, DG ENV.A.2/LM, Brussels.Google Scholar
  16. Gielen, D.J., de Feber, M.A.P.C., Bos, A.J.M. and Gerlagh, T.: 2001, ‘Biomass for energy or materials?: A Western European systems engineering perspective’, Energy Policy 29(4), 291–302.CrossRefGoogle Scholar
  17. Griffin, J.M.: 1993, ‘Methodological advances in energy modelling: 1970–1990’, The Energy Journal 14(1), 111–124.CrossRefGoogle Scholar
  18. Gustavsson, L., Pingoud, K. and Sathre, R.: 2004, ‘Carbon dioxide balance of wood substitution: Comparing concrete- and wood-framed buildings (manuscript).Google Scholar
  19. Gustavsson, L. and Sathre, R.: 2004, Variability in energy and carbon dioxide balances of wood and concrete building materials (Manuscript).Google Scholar
  20. Gustavsson, L., Karjalainen, T., Marland, G., Savolainen, I., Schlamadinger, B. and Apps, M.: 2000, ‘Project-based greenhouse gas accounting: Guiding principles with focus on baselines and additionality’, Energy Policy 28(13), 935–946.CrossRefGoogle Scholar
  21. HAF (Holzabsatzfonds): 2000, Holzkultur. (Wood Culture), Timber Sales Promotion Fund. Bonn, Germany, 39 pp. (in German).Google Scholar
  22. HAF (Holzabsatzfonds): 2001, Telefonbefragung Banken/Versicherungen/Bausparkassen (Telephone survey of banks/insurance companies/mortgage banks), Timber Sales Promotion Fund. Infobrief 1/2001, p. 2. (in German).Google Scholar
  23. Houghton, J.T., Meira Filho, L.G., Callander, B.A., Harris, N., Kattenberg, A. and Maskell, K.: 1996, Climate Change 1995: The Science of Climate Change, Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, 572 pp.Google Scholar
  24. Järvinen, E., Toivonen, R. and Enroth, R.-R.: 2001, Competence and image of wood on the German building material markets. Pellervo Economic Research Institute, Helsinki, Finland, Working Paper No. 50, December.Google Scholar
  25. Jungmeier, G., Werner, F., Jarnehammar, A., Hohenthal, C. and Richter, K.: 2002, ‘Allocation in LCA of Wood-based Products: Experiences of Cost Action E9. Part I. Methodology’, Int. J. LCA 7(6), 369–375.Google Scholar
  26. Karjalainen, T.: 1996, ‘Dynamics and potentials of carbon sequestration in managed stands and wood products in Finland under changing climatic conditions’, Forest Ecology and Management 80(1–3), 113–132.CrossRefGoogle Scholar
  27. Karlsson, Å. and Gustavsson, L.: 2003, ‘External costs and taxes in heat supply systems’, Energy Policy 31(14), 1541–1560.CrossRefGoogle Scholar
  28. Kauppi, P. and Sedjo, R.: 2001, ‘Technological and Economic Potential of Options to Enhance, Maintain, and Manage Biological Carbon Reservoirs and Geo-engineering’, In B. Metz, O. Davidson, R. Swart and J.H. Pan (eds.), Climate Change 2001: Mitigation, IPCC Third Assessment Report Vol. 3, New York, Academic Press,
  29. Koopmans, C.C. and Willem te Velde, D.: 2001, ‘Bridging the energy efficiency gap: Using bottom-up information in a top-down energy demand model’, Energy Economics 23(1), 57–75.CrossRefGoogle Scholar
  30. van de Kuilen, J.-W.G.: 2001, Research of wood as a construction material and current situation of wood construction in the Netherlands. Wood Construction Network Seminar, 7 November 2001, Lahti, Finland,
  31. Madlener, R. and Gustavsson, L.: 2002, Socio-economics of the diffusion of innovative bioenergy technologies: The case of small pellet heating systems in Austria. In: Segon, V. and Domac, J. (eds.), Proceedings of the Workshop “Socio-Economic Aspects of Bioenergy Systems: Issues Ahead”, Cavtat, Croatia, 19–21 September 2002, published by IEA Bioenergy Task 29/Energy Institute ‘Hrvoje Pozar’, Zagreb/Croatia, March 2003, pp. 5–24.Google Scholar
  32. Mansfield, E.: 1961, ‘Technical change and the rate of imitation’, Econometrica 29(Oct.), 741–766.CrossRefGoogle Scholar
  33. Mantau, U.: 1995, ‘Marktanteile der fensterrahmenstoffe verändern sich (Market share of materials for window frames are changing)’, Holz-Zentralblatt 121(137), 2245–2246 (in German).Google Scholar
  34. Marland, G. and Schlamadinger, B.: 1997, ‘Forests for carbon sequestration or fossil fuel substitution? A sensitivity analysis’, Biomass and Bioenergy 13(6), 389–397.CrossRefGoogle Scholar
  35. Matthews, R., Nabuurs, G.J., Alexeyev, V., Birdsey, R.A., Fischlin, A., MacLaren, J.P., Marland, G. and Price, D.: 1996, Evaluating the role of forest management and forest products in the carbon cycle, in M.J. Apps and D.T. Price (eds.), Forest ecosystems, forest management and the global carbon cycle, WG3 Summary in NATO Advanced Science Institute Series, NATO-ASI Vol. I 40, Berlin, Heidelberg, Proceedings of a workshop held in September 1994 in Banff, Canada, pp. 293–301.Google Scholar
  36. McKibbin, W.J.: 1998, Forecasting the world economy using dynamic intertemporal general equilibrium multi-country models, Invited Paper for the Business Symposium on Economic Forecasting, Sydney, 1 Oct 2003, September.Google Scholar
  37. McKibbin, W.J. and Wilcoxen, P.J.: 2003, Estimates of the costs of Kyoto-Marrakesh versus the McKibbin-Wilcoxen Blueprint. Departmental Papers, Australian National University, February.Google Scholar
  38. McKibbin, W.J and Sachs, J.D.: 1989, The McKibbin-Sachs global model. NBER Working Paper Series, National Bureau of Economic Research, Cambridge, MA., Working paper No. 3100.Google Scholar
  39. MCPFE: 1993, General Guidelines for the Sustainable Management of Forests in Europe. Resolution H1, The Second Ministerial Conference on the Protection of Forests in Europe, Helsinki, Finland.Google Scholar
  40. MCPFE: 2003a, Improved Pan-European Indicators for Sustainable Forest Management. Adopted by the MCPFE Expert Level Meeting 7–8 October 2002, Vienna, Austria. MCPFE Liason Unit Vienna.Google Scholar
  41. MCPFE: 2003b. Vienna Declaration and Vienna Resolutions. Adopted at the Fourth Ministerial Conference on the Protection of Forests in Europe. 28–30 April 2003. Vienna, Austria. MCPFE Liason Unit Vienna.Google Scholar
  42. Metla: 2004, Metla House – a building for forest research employs wood in innovative ways, Press release, 10 November 2004, Finnish Forest Research Institute, Helsinki, Finland,
  43. Müller, T.: 2000, Integrating bottom-up and top-down models for energy policy analysis: A dynamic framework. CUEPE Report No. 00.02. University of Geneva, Switzerland, November.Google Scholar
  44. Nabuurs, G.J., Pussinen, A., Karjalainen, T., Erhard, M. and Kramer, K.: 2002, ‘Increment changes in European forests due to climate change’, Global Change Biology 8, 1–13.CrossRefGoogle Scholar
  45. Nilsson, S.: 2001, The future of the European solid wood industry. Interim Report IR-01–001, International Institute for Applied Systems Analysis, Laxenburg, Austria.Google Scholar
  46. Östman, B.: 1997, Fire safe wood house – a Nordic Wood Project (Brandsäkra trähus – ett Nordic Wood Projekt). Final Report – phase 1, Trätek Rapport, P 9702014, cf. Bengtsson, 2003.Google Scholar
  47. Petersen, A.K. and Solberg, B.: 2002, ‘Greenhouse gas emissions, life-cycle inventory and cost-efficiency of using laminated wood instead of steel construction. Case: Beams at Gardermoen airport’, Environmental Science & Policy 5(2), 169–182.CrossRefGoogle Scholar
  48. Petersen, A.K. and Solberg, B.: 2003, ‘Substitution between floor constructions in wood and natural stone: Comparison of energy consumption, greenhouse gas emissions, and costs over the life cycle’, Can. J. For. Res 33(6), 1061–1075.CrossRefGoogle Scholar
  49. Petersen, A.K. and Solberg, B.: 2005, Environmental and economic impacts of substitution between wood products and alternative materials: A review of micro-level analyses from Norway and Sweden. Forest Policy and Economics 7(3), 249–259.CrossRefGoogle Scholar
  50. Radkau, J. and Schäfer, I.: 1987, Holz – Ein Naturstoff in der Technikgeschichte (Wood – A Natural Material in History of Techniques) Deutsches Museum Kulturgeschichte der Naturwissenschaften und der Technik. Rowohlt Taschenbuchverlag GmbH, Reinbek bei Hamburg, Germany, 313 pp. (in German).Google Scholar
  51. Reid, H., Huq, S., Inkinen, A., MacGregor, J., Macqueen, D., Mayers, J., Murray, L. and Tipper, R.: 2004, Using wood products to mitigate climate change: A review of evidence and key issues for sustainable development. International Institute of Environment and Development. January, 90 pp.
  52. Renner, T.: 1998, Hausbau und Holzimage – Wachstumsmarkt oder ewiger Hoffnungsträger? (House construction and wood image – Growing market or everlasting hope?), in Bartelheimer, P., Moog, M. and Suda, M. (eds.), Waldbewirtschaftung und Holzimage Konzepte und Probleme. Forstliche Forschungsberichte München 172/1998. 29 – 48 (in German).Google Scholar
  53. Rosenbaum, A.: 2001, Holzabsatzförderung – Strategien im Zentralen Marketing für Forst & Holz. (Wood sale promotion – Strategies of the marketing for forest and wood) Deutscher Forstverein e.V. 60. Jahrestagung. Dresden, 126–136 (in German).Google Scholar
  54. Sampson, R.N., Apps, M., Brown, S., Cole, C.V., Downing, J., Heath, L.S., Ojima, D.S., Smith, T.M., Solomon, A.M. and Wisniewski, J.: 1993, ‘Workshop Summary Statement – Terrestrial Biospheric Carbon Fluxes – Quantification of Sinks and Sources of CO2’, Water Air and Soil Pollution 70(1–4), 3–15.CrossRefGoogle Scholar
  55. Schlamadinger, B, Apps, M., Bohlin, F., Gustavsson, L., Jungmeier, G., Marland, G., Pingoud, K. and Savolainen, I.: 1997, ‘Towards a standard methodology for greenhouse gas balances of bioenergy systems in comparison with fossil energy systems’, Biomass and Bioenergy 13(6), 359–375.CrossRefGoogle Scholar
  56. Schulz, H.: 1993, ‘Entwicklung der Holzverwendung im 19., 20. und 21. Jahrhundert (Development of wood utilization in the 19th, 20th and 21st Century)’, Holz als Roh- und Werkstoff 51, 75–82 (in German).CrossRefGoogle Scholar
  57. Spelter, H.: 1984, ‘Price elasticities of demand for softwood plywood and structural particleboard in the United States’, Can. J. For. Res. 14, 528–535.CrossRefGoogle Scholar
  58. Spelter, H.: 1985, ‘A product diffusion approach to modeling softwood lumber demand’, Forest Sci. 31(3), 685–700.Google Scholar
  59. Spelter, H.: 1995, ‘Emerging non-wood building materials in residential construction’, Forest Prod. J. 46(7/8), 29–36.Google Scholar
  60. Statistisches Bundesamt: 2002, Fachserie 5, Reihe1. Genehmigte Bauvorhaben im Hochbau (Permits of building constructions). Wiesbaden, Germany (in German).Google Scholar
  61. TBFRA: 2000, Temperate and boreal forest resource assessment. United Nations Economic Commission for Europe,
  62. Toratti, T.: 2001, ‘A survey on the current situation and research needs of wood construction in Europe. Wood Construction Network Seminar, 7 November 2001, Lahti, Finland,
  63. UNECE: 1996, Cut trees to save environment? Europe is losing its wood markets!, Press Release, United Nations Economic Commission for Europe,
  64. UNECE/FAO: 2003, Forest products annual market analysis 2002–2004. Timber bulletin LVI (3), Timber Branch, United Nations Economic Commission for Europe/Food and Agricultural Organization of the United Nations, Geneva.Google Scholar
  65. UNFCCC: 1997, Kyoto Protocol to the United Nations Framework Convention on Climate Change.
  66. Verband der Fenster- und Fassadenhersteller: 2002, Der deutsche Fenstermarkt (The German window market) 12/2001, (in German).
  67. Watson, R.T., Zinyowera, M.C., Moss, R.H. and Dokken D.J. (eds.): 1996a, Impacts, Adaptations, and Mitigation of Climate Change: Scientific-Technical Analysis. Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, 878 pp.Google Scholar
  68. Watson, R.T, Zinyowera, M.C. and Moss, R.H. (eds.): 1996b, Technologies, policies and measures for mitigating climate change. Technical paper of the IPCC working Group II,
  69. Watson, R.T. and Core Writing Team (eds.): 2001a, Climate Change 2001: Synthesis Report, A Contribution of Working Groups I, II, and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, U.K., and New York, U.S.A., 398 pp.Google Scholar
  70. Watson, R.T., Noble, I.-R., Bolin, B., Ravindranath, N.H., Verardo, D.J. and Dokken, D.J. (eds.): 2001b, Land Use, Land-Use Change and Forestry. A Special Report of the IPCC, 377 pp.Google Scholar
  71. Winter, W.: 1995, ‘Holz ist der Werkstoff des 21. Jahrhunderts (Wood is the material of the 21st Century)’, Holz-Zentralblatt 121(2/3), 13,16,20 (in German).Google Scholar
  72. Wood Products Council: 1999, Wood used in new residential construction – 1998 and 1995. Tacoma, WA: APA – The Engineered Wood Association.Google Scholar
  73. Yoshida, Y., Ishitani, H. and Matsuhashi, R.: 2000, ‘Modelling energy system using three-dimensional input-output analysis’, Int. J. Global Energy Issues 13(1–3), 86–101.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • L. Gustavsson
    • 1
    Email author
  • R. Madlener
    • 2
  • H.-F. Hoen
    • 3
  • G. Jungmeier
    • 4
  • T. Karjalainen
    • 5
  • S. KlÖhn
    • 6
  • K. Mahapatra
    • 1
  • J. Pohjola
    • 7
  • B. Solberg
    • 3
  • H. Spelter
    • 8
  1. 1.EcotechnologyMid Sweden UniversityÖstersundSweden
  2. 2.Department of Management, Technology, and EconomicsCentre for Energy Policy and Economics (CEPE)ZurichSwitzerland
  3. 3.Department of Ecology and Natural Resource ManagementAgricultural University NorwayÅsNorway
  4. 4.Institute of Energy ResearchJoanneum ResearchGrazAustria
  5. 5.Finnish Forest Research InstituteJoensuu Research CentreJoensuuFinland
  6. 6.University of Technology DresdenTharandtGermany
  7. 7.Finnish Forest Research InstituteHelsinkiFinland
  8. 8.Forest Products LaboratoryUSDA Forest ServiceMadisonU.S.A.

Personalised recommendations