CO2 Mitigation and Renewable Oil from Photosynthetic Microbes: A New Appraisal



The only major strategy now being seriously considered for biological mitigation of atmospheric CO2 relies entirely on terrestrial plants. Photosynthetic microbes were the focus of similar consideration in the 1990s. However, two major government-sponsored research programs in Japan and the USA concluded that the requisite technology was not feasible, and those programs were terminated after investing US$117 million and US$25 million, respectively. We report here on the results of a privately funded US$20 million program that has engineered, built, and successfully operated a commercial-scale (2 ha), modular, production system for photosynthetic microbes. The production system couples photobioreactors with open ponds in a two-stage process – a combination that was suggested, but never attempted – and has operated continuously for several years to produce Haematococcus pluvialis. The annually averaged rate of achieved microbial oil production from H. pluvialis is equivalent to <420 GJ ha -1 yr-1, which exceeds the most optimistic estimates of biofuel production from plantations of terrestrial ``energy crops.'' The maximum production rate achieved to date is equivalent to 1014 GJ ha-1 yr-1. We present evidence to demonstrate that a rate of 3200 GJ ha-1 yr-1 is feasible using species with known performance characteristics under conditions that prevail in the existing production system. At this rate, it is possible to replace reliance on current fossil fuel usage equivalent to ∼300 EJ yr-1 – and eliminate fossil fuel emissions of CO2 of ∼6.5 GtC yr-1 – using only 7.3% of the surplus arable land projected to be available by 2050. By comparison, most projections of biofuels production from terrestrial energy crops would require in excess of 80% of surplus arable land. Oil production cost is estimated at $84/bbl, assuming no improvements in current technology. We suggest enhancements that could reduce cost to $50/bbl or less.


biodiesel bioenergy bioengineering biofuels microalgae microbes mitigation photobioreactor photosynthesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acién Fernández, F.G., García Camacho, F., Sánchez Pérez, J.A., Fernández Sevilla, J.M. and Molina Grima, E.: 1998, ‘Modeling of biomass productivity in tubular photobioreactors for microalgal cultures: Effects of dilution rate, tube diameter, and solar irradiance’, Biotechnology and Bioengineering 58(6), 605–616.CrossRefGoogle Scholar
  2. Allen, E.J. and Nelson, E.W.: 1910, ‘On the artificial culture of marine plankton organisms’, Journal of the Marine Biological Association of the U.K. 8, 421–474.CrossRefGoogle Scholar
  3. Amthor, J.S. and Huston, M.A. (eds.): 1998, Terrestrial Ecosystem Responses to Global Change: A Research Strategy, Oak Ridge, TN, Oak Ridge National Laboratory, 37 pp.Google Scholar
  4. Barclay, W., Johansen, J., Chelf, P., Nagle, N., Roessler, P. and Lemke, P.: 1986, Microalgae Culture Collection 1986–87, Golden, Colorado, USA, Solar Energy Research Institute, SERI/SP-232-3079, 147 pp.Google Scholar
  5. Becker, E.W.: 1978, Microalgae: Findings of three experimentation projects, Eschborn, Germany, Deutsche Gesellschaft für Technische Zusammenarbeit, Schrifternreihe der GTZ No. 143, 94 pp.Google Scholar
  6. Benemann, J.: 1989, ‘The future of microalgal biotechnology’, in R.C. Cresswell, T.A.V. Rees and N. Shah (eds.), Algal and Cyanobacterial Biotechnology, Harlow, UK, Longman Scientific and Technical, pp. 317–337.Google Scholar
  7. Benemann, J. and Oswald, W.J.: 1996, Systems and Economic Analysis of Microalgae Ponds for Conversion of CO2 to Biomass, Pittsburgh Energy Technology Center, Final Report, Grant No. DE-FG22-93PC93204.Google Scholar
  8. Benemann, J., Goebel, R.P., Weissman, J.C. and Augenstein, D.C.: 1982, Microalgae as a Source of Liquid Fuels, Washington, DC, US Department of Energy, 202 pp.Google Scholar
  9. Berndes, G., Hoogwijk, M. and van den Broek, R.: 2003, ‘The contribution of biomass in the future global energy supply: A review of 17 studies’, Biomass and Bioenergy 25, 1–28.CrossRefGoogle Scholar
  10. Beyerinck, M.W.: 1890, ‘Culturversuche met zoochlorellen’, Lichenengonidien und Anderen Niederen Algen Botanische Zeitung 48, 724–739, 741–754, 757–768, 781–785.Google Scholar
  11. Bischoff, H.W. and Bold, H.C.: 1963, Phycological Studies. IV. Some Algae From Enchanted Rock and Related Algal Species, University of Texas, Publication 6318, 95 pp.Google Scholar
  12. Borowitzka, L.J.: 1999, ‘Commercial production of microalgae: Ponds, tanks, tubes and fermenters’, Journal of Biotechnology 70, 313–321.CrossRefGoogle Scholar
  13. Borowitzka, L.J., Borowitzka, M.A. and Moulton, T.P.: 1984, ‘The mass culture of Dunaliella salina for fine chemicals: From laboratory to pilot plant’, Hydrobiologia 116/117, 115–134.CrossRefGoogle Scholar
  14. Borowitzka, M.A.: 1996, ‘Closed algal photobioreactors: Design considerations for large-scale systems’, Journal of Marine Biotechnology 4, 185–191.Google Scholar
  15. Boussiba, S.: 2000, ‘Carotenogenesis in the green alga Haematococcus pluvialis: Cellular physiology and stress response’, Physiologia Plantarum 108, 111–117.CrossRefGoogle Scholar
  16. Brown, A.D. and Borowitzka, L.J.: 1979, ‘Halotolerance of Dunaliella’, in M. Levandowsky and S.H. Hutner (eds.), Biochemistry and Physiology of Protozoa, New York, Academic Press, Vol. 1, pp. 139–190.Google Scholar
  17. Bubrick, P.: 1991, ‘Production of astaxanthin from Haematococcus’, Bioresource Technology 38, 237–239.CrossRefGoogle Scholar
  18. Burgess, J.G., Iwamoto, K., Miura, Y., Takano, H. and Matsunaga, T.: 1993, ‘An optical fiber photobioreactor for enhanced production of the marine unicellular alga Isochrysis aff. galbana T-Iso (UTEX-LB2307) rich in docosahexaenoic acid’, Applied Microbiology and Biotechnology 39(4–5), 456–459.CrossRefGoogle Scholar
  19. Burlew, J.S.: 1953, Algal Culture From Laboratory to Pilot Plant, Washington, DC, Carnegie Institute of Washington, 357 pp.Google Scholar
  20. Chisholm, S.W., Falkowski, P.G. and Cullen, J.J.: 2001, ‘Dis-crediting ocean fertilization’, Science 294, 309–310.CrossRefGoogle Scholar
  21. Darmstadter, J.: 2003, The Economic and Policy Setting of Renewable Energy: Where Do Things Stand?, Washington, DC, Resources for the Future, 21 pp. Available from rff/Documents/RFF-DP-03-64.pdf
  22. Dugan, G.L.: 1980, Algal Mass Culture: Principles, Procedures and Prospects, Hawaii Natural Energy Institute, Honolulu, University of Hawaii, pp. 1–54.Google Scholar
  23. Dunahay, T.G., Jarvis, E.E. and Roessler, P.G.: 1995, ‘Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila’, Journal of Phycology 31(6), 1004–1012.CrossRefGoogle Scholar
  24. Dunahay, T.G., Jarvis, E.E., Dais, S.S. and Roessler, P.G.: 1996, ‘Manipulation of microalgal lipid production using genetic engineering’, Applied Biochemistry and Biotechnology 57–58, 223– 231.Google Scholar
  25. Dyni, J.R.: 2003, ‘Geology and resources of some world oil-shale deposits’, Oil Shale 20(3), 193–252.Google Scholar
  26. Edmonds, J.A.: 2004, ‘Climate change and energy technologies’, Mitigation and Adaptation Strategies for Global Change 9(4), 391–416.CrossRefGoogle Scholar
  27. EIA: 1999, International Energy Outlook, Washington, DC, US Department of Energy, Energy Information Administration, DOE/EIA-0484(1999).Google Scholar
  28. EIA: 2003a, Annual Energy Outlook 2003, Washington, DC, US Department of Energy, Energy Information Administration, DOE/EIA-0383 (2003).Google Scholar
  29. EIA: 2003b, Annual Energy Outlook 2003: Natural Gas, Washington, DC, US Department of Energy, Energy Information Administration, DOE/EIA-0484(2003).Google Scholar
  30. El-Fouly, M.M., Abdalla, F.E., Saleh, A.M., Shaheen, A.B. and El-Baz, F.K.: 1984, ‘Technological and biochemical studies on mass production of algae in Egypt’, Archiv für Mikrobiologie Supplement 37, 461–478.Google Scholar
  31. Eppley, R.W.: 1972, ‘Temperature and phytoplankton growth in the sea’, Fisheries Bulletin 70, 1063–1085.Google Scholar
  32. EWEA: 2004, Global Wind Power Growth Continues to Strengthen: Recordeuro8 Billion Wind Power Installed in 2003. Available from
  33. Fábregas, J., Maseda, A., Domínguez, A. and Otero, A.: 2004, ‘The cell composition of Nannochloropsis sp. changes under different irradiances in semicontinuous culture’, World Journal of Microbiology and Biotechnology 20(1), 31–35.CrossRefGoogle Scholar
  34. Fábregas, J., Dominguez, A., Regueiro, M., Maseda, A. and Otero, A.: 2000, ‘Optimization of culture medium for the continuous cultivation of the microalga Haematococcus pluvialis’, Applied Microbiology and Biotechnology 53(5), 530–535.CrossRefGoogle Scholar
  35. Falkowski, P. and LaRoche, J.: 1991, ‘Minireview: Acclimation to spectral irradiance in algae’, Journal of Phycology 27, 8–14.CrossRefGoogle Scholar
  36. Fidalgo, J.P., Cid, A., Torres, E., Sukenik, A. and Herrero, C.: 1998, ‘Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana’, Aquaculture 166(1–2), 105–116.CrossRefGoogle Scholar
  37. Fischer, G. and Schrattenholzer, L.: 2001, ‘Global bioenergy potentials through 2050’, Biomass and Bioenergy 20, 151–159.CrossRefGoogle Scholar
  38. Frantzis, L.: 2003, Global Power Markets: Why Should the U.S. Care?, Third Energy Analysis Forum, Arlington, VA, USA. Available from frantzis.pdf.
  39. Gaffron, H. and Rubin, J.: 1942, ‘Fermentative and photochemical production of hydrogen in algae’, Journal of General Physiology 20, 219–240.CrossRefGoogle Scholar
  40. Goldman, J.C.: 1979, ‘Outdoor algal mass cultures-I. Applications’, Water Research 13, 1–13.CrossRefGoogle Scholar
  41. Gummert, F., Meffert, M.E. and Stratmann, H.: 1953, ‘Non-sterile large-scale culture of Chlorella in greenhouse and open air’, in J.S. Burlew (ed.) Algal Culture From Laboratory to Pilot Plant, Washington, DC, Carnegie Institution of Washington, Publication No. 600, pp. 166–176.Google Scholar
  42. Hall, D.O., Rosillo-Calle, F., Williams, R.H. and Woods, J.: 1993, ‘Biomass for energy: Supply prospects’, in T.B. Johansson, H. Kelly, A.K.N. Reddy, R.H. Williams and L. Burnham (eds.), Renewable Energy: Sources for Fuels and Electricity, Washington, DC, Island Press, pp. 593– 651.Google Scholar
  43. Hall, D.O., Fernandez, F.G.A., Guerrero, E.C., Rao, K.K. and Grima, E.M.: 2003, ‘Outdoor helical tubular photobioreactors for microalgal production: Modeling of fluid-dynamics and mass transfer and assessment of biomass’, Biotechnology and Bioengineering 82(1), 62–73.CrossRefGoogle Scholar
  44. Hallenbeck, P.C. and Benemann, J.: 2002, ‘Biological hydrogen production; fundamentals and limiting processes’, International Journal of Hydrogen Energy 27, 1185–1193.CrossRefGoogle Scholar
  45. Hu, Q., Guterman, H. and Richmond, A.: 1996a, ‘A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs’, Biotechnology and Bioengineering 51(1), 51–60.CrossRefGoogle Scholar
  46. Hu, Q., Guterman, H. and Richmond, A.: 1996b, ‘Physiological characteristics of Spirulina platensis (cyanobacteria) cultured at ultrahigh cell densities’, Journal of Phycology 32, 1066–1073.CrossRefGoogle Scholar
  47. Huntley, M.E., Niiler, P. and Redalje, D.: 1996, ‘Method of control of microorganism growth process’, U.S. Patent No. 5,541,056.Google Scholar
  48. Huntley, M.E., Wahlberg, D., Redalje, D. and Jordan, J.: 1997, ‘Process and apparatus for the production of photosynthetic microbes’, European Patent No. 0-494-887.Google Scholar
  49. Huntley, M.E., Niiler, P., Redalje, D. and Leonard, A.: 1999, ‘Method of control of Haematococcus spp. growth process’, US Patent No. 5,882,849.Google Scholar
  50. IEA: 1998, World Energy Outlook – 1998 Update, Paris, France, International Energy Agency/OECD.Google Scholar
  51. Illman, A.M., Scragg, A.H. and Shales, S.W.: 2000, ‘Increase in Chlorella strains calorific values when grown in low nitrogen medium’, Enzyme and Microbial Technology 27(8), 631–635.CrossRefGoogle Scholar
  52. Construction, I.W.P.a.D. International Water Power and Dam Construction Yearbook: 1997, Sidcup, Kent, UK, Wilmington Media.Google Scholar
  53. IPCC: 1995, ‘Climate change 1995: Impacts, adaptations and mitigation of climate change: Scientific-technical analyses. Contribution of working group II to the second assessment report of the intergovernmental panel on climate change’, in R.T. Watson, M.C. Zinyowera and R.H. Moss (eds.), Cambridge, UK, Cambridge University Press.Google Scholar
  54. IPCC: 2001a, ‘Climate change 2001: Synthesis report. A contribution of working groups I, II and III to the third assessment report of the intergovernmental panel on climate change’, in R.T. Watson and the Core Writing Team (eds.), Cambridge, UK, Cambridge University Press, 398 pp.Google Scholar
  55. IPCC: 2001b, ‘Climate change 2001: Mitigation. Contribution of working group III to the third assessment report of the intergovernmental panel on climate change’, in B. Metz, O. Davidson, R. Swart and J. Pan (eds.), Cambridge, UK, Cambridge University Press, 751 pp.Google Scholar
  56. IPCC: 2001c, ‘Climate change 2001: The scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change’, in J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell and C.A. Johnson (eds.), Cambridge, UK, Cambridge University Press, 881 pp.Google Scholar
  57. Janssen, M., Tramper, J., Mur, L.R. and Wijffels, R.H.: 2003, ‘Enclosed outdoor photobioreactors: Light regime, photosynthetic efficiency, scale-up, and future prospects’, Biotechnology and Bioengineering 81(2), 193–210.CrossRefGoogle Scholar
  58. Jassby, A.: 1988, ‘Some public health aspects of microalgal products’, in C.A. Lembi (ed.), Algae and Human Affairs, Cambridge, UK, Cambridge University Press, pp. 181–183.Google Scholar
  59. Jimenez, C., Cossio, B.R. and Niell, F.X.: 2003, ‘Relationship between physicochemical variables and productivity in open ponds for the production of Spirulina: A predictive model of algal yield’, Aquaculture 221(1–4), 331–345.CrossRefGoogle Scholar
  60. Johansson, T.B., Kelly, H., Reddy, A.K.N. and Williams, R.H.: 1993, ‘A renewables-intensive global energy scenario’, in L. Burnham (ed.), Renewable Energy: Sources for Fuels and Electricity, Washington, DC, Island Press, pp. 1071–1143.Google Scholar
  61. Johnston, H.W.: 1976, ‘The biological and economic importance of algae. Part 4: The industrial culturing of algae’, Tuatara 22, 1–114.Google Scholar
  62. Kanazawa, T., Fujita, C., Yuhara, T. and Sasa, T.: 1958, Mass culture of unicellular algae using the ‘open circulation method’, Journal of General and Applied Microbiology 4, 135–152.Google Scholar
  63. Ketchum, B.H. and Redfield, A.C.: 1938, ‘A method for maintaining a continuous supply of marine diatoms in culture’, Biological Bulletin 75, 165–169.Google Scholar
  64. Ketchum, B.H., Lillick, L. and Redfield, A.C.: 1949, ‘The growth and optimum yields of unicellular algae in mass culture’, Journal of Cellular Comparative Physiology 33, 267–279.CrossRefGoogle Scholar
  65. Kirk, J.T.O.: 1994, Light and Photosynthesis in Aquatic Ecosystems, Cambridge, UK, Cambridge University Press, 509 pp.Google Scholar
  66. Laing, I. and Ayala, F.: 1990, ‘Commercial mass culture techniques for producing microalgae’, in I. Atasuka (ed.), Introduction to Applied Phycology, The Hague, Netherlands, SPB Academic Publishing, pp. 447–477.Google Scholar
  67. Laws, E.A., Taguchi, S., Hirata, J. and Pang, L.: 1986, ‘High algal production rates achieved in a shallow outdoor flume’, Biotechnology and Bioengineering 28, 191–197.CrossRefGoogle Scholar
  68. Lazarus, M., Greber, L., Hall, J., Bartels, C., Bernow, S., Hansen, E., Raskin, P. and von Hippel, D.: 1993, Towards a Fossil Free Energy Future, Boston, Stockholm Environmental Institute – Boston Center.Google Scholar
  69. Lee, Y.K.: 2001, ‘Micoalgal mass culture systems and methods: Their limitation and potential’, Journal of Applied Phycology 13, 307–315.CrossRefGoogle Scholar
  70. Leemans, R., van Amstel, A., Battjes, C., Kreileman, E. and Toet, S.: 1996, ‘The land cover and carbon cycle consequences of large-scale utilizations of biomass as an energy source’, Global Environmental Change 6(4), 335–357.CrossRefGoogle Scholar
  71. León-Bañares, R., González-Ballester, D., Galván, A. and Fernández, E.: 2004, ‘Transgenic microalgae as green cell-factories’, Trends in Biotechnology 22(1), 45–52.CrossRefGoogle Scholar
  72. Lewin, R.A.: 1985, Production of Hydrocarbons by Micro-Algae: Isolation and Characterization of New and Potentially Useful Algal Strains, Golden, Colorado, USA, Solar Energy Research Institute, SERI/CP-231-2700, pp. 43–51.Google Scholar
  73. Lien, S. and San Pietro, A.: 1976, Inquiry Into the Biophotolysis of Water to Produce Hydrogen, Washington, DC, National Science Foundation, NSF/RA-760417, 58 pp.Google Scholar
  74. Longhurst, A., Sathyendranath, S., Platt, T. and Caverhill, C.: 1995, ‘An estimate of global primary production in the ocean from satellite radiometer data’, Journal of Plankton Research 17, 1245–1271.Google Scholar
  75. Ma, F. and Hanna, M.A.: 1999, ‘Biodiesel production: A review’, Bioresource Technology 70, 1–15.CrossRefGoogle Scholar
  76. Martin, J.H.: 1990, ‘A new iron age, or a ferric fantasy’, US JGOFS Newsletter 1(4), 5–6.Google Scholar
  77. Martin, J.H.: 1991, ‘Iron, Liebig's Law, and the greenhouse’, Oceanography 4, 52–55.Google Scholar
  78. Matsunaga, T., Takeyama, H., Sudo, H., Oyama, N., Niura, S., Takano, H., Hirano, M., Burgess, J.G., Sode, K. and Nakamura, N.: 1991, ‘Glutamate production from CO2 by marine cyanobacterium Synechococcus sp. using a novel photobioreactor employing light-diffusing optical fiber’, Applied Biochemistry and Biotechnology 28/29, 157–167.CrossRefGoogle Scholar
  79. Melis, A., Neihardt, J. and Benemann, J.: 1999, ‘Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells’, Journal of Applied Phycology 10, 515–525.CrossRefGoogle Scholar
  80. Morita, T., Nakicenovic, N. and Robinson, J.: 2000, ‘Overview of mitigation scenarios for global climate stabilization based on New IPCC Emission Scenarios (SRES)’, Environmental Economics and Policy Studies 3(2).Google Scholar
  81. Morita, T., Watanabe, Y. and Saiki, H.: 2002, ‘Photosynthetic productivity of conical helical tubular photobioreactor incorporating Chlorella sorokiniana under field conditions’, Biotechnology and Bioengineering 77(2), 155–162.CrossRefGoogle Scholar
  82. Murakami, M. and Ikenouchi, M.: 1997, ‘The biological CO2 fixation and utilization project by RITE. 2. Screening and breeding of microalgae with high capability in fixing CO2’, Energy Conversion and Management 38(Suppl.), 493–498.CrossRefGoogle Scholar
  83. Myers, J. and Clark, L.B.: 1944, ‘Culture conditions and the development of the photosynthetic mechanism – II. An apparatus for the continuous culture of Chlorella’, Journal of General Physiology 28, 103–112.CrossRefGoogle Scholar
  84. Nakajima, Y. and Itayama, T.: 2003, ‘Analysis of photosynthetic activity of microalgal mass cultures’, Journal of Applied Phycology 15, 497–505.CrossRefGoogle Scholar
  85. Nakicenovic, N., Grübler, A. and McDonald, A. (eds.): 1998, Global Energy Perspectives, Cambridge, UK, Cambridge University Press, 299 pp.Google Scholar
  86. Nakicenovic, N., Alcamo, J., Davis, G., de Vries, H.J.M., Fenhann, J., Gaffin, S., Gregory, K., Grubler, A., Jung, T.Y., Kram, T., La Rovere, E.L., Michaelis, L., Mori, S., Morita, T., Papper, W., Pitcher, H., Price, L., Riahi, K., Roehrl, A., Rogner, H.-H., Sankovski, A., Schlesinger, M., Shukla, P., Smith, S., Swart, R., van Rooijen, S., Victor, N. and Dadi, Z.: 2000, Special Report on Emissions Scenarios. Intergovernmental Panel on Climate Change, Cambridge, UK, Cambridge University Press.Google Scholar
  87. Nishikawa, N., Koyu, H.N., Hirano, A., Ikuta, Y., Hukuda, Y., Negoro, M., Kaneko, M. and Hada, M.: 1992, ‘Reduction of carbon dioxide emission from flue-gas with microalgae cultivation’, Energy Conversion and Management 33(5–8), 553–560.CrossRefGoogle Scholar
  88. Olaizola, M.: 2000, ‘Commercial production of astaxanthin from Haematococcus pluvialis using 25,000 liter photobioreactors’, Journal of Applied Phycology 12, 499–506.CrossRefGoogle Scholar
  89. Olaizola, M.: 2003, ‘Commercial development of microalgal biotechnology: From the test tube to the marketplace’, Biomolecular Engineering 20, 459–466.CrossRefGoogle Scholar
  90. Oswald, W.J.: 1973, ‘Complete waste treatment in ponds’, in S.H. Jenkins (ed.), Progress in Water Technology. Vol. 3. Water Quality: Management and Pollution Control Problems, Oxford, UK, Pergamon Press, pp. 153–163.Google Scholar
  91. Oswald, W.J. and Golueke, C.G.: 1960, ‘Biological transformations of solar energy’, Advances in Applied Microbiology 2, 223–262.CrossRefGoogle Scholar
  92. Otero, A. and Fábregas, J.: 1997, ‘Changes in the nutrient composition of Tetraselmis suecica cultured semicontinuously with different nutrient concentrations and renewal rates’, Aquaculture 159(1–2), 111–123.CrossRefGoogle Scholar
  93. Paustian, K., Cole, C.V., Sauerbeck, D. and Sampson, N.: 1998, ‘CO2 mitigation by agriculture: An overview’, Climatic Change 40, 135–162.CrossRefGoogle Scholar
  94. Pearson, P.N. and Palmer, M.R.: 2000, ‘Atmospheric carbon dioxide concentrations over the past 60 million years’, Nature 406, 695–699.CrossRefGoogle Scholar
  95. Pirt, S.J., Lee, Y.K., Richmond, A. and Pirt, M.W.: 1980, ‘The photosynthetic efficiency of Chlorella biomass growth with reference to solar energy utilization’, Journal of Chemical Technology and Biotechnology 30, 25–34.CrossRefGoogle Scholar
  96. Pringsheim, E.G.: 1928, ‘Algenkulturen. Eine Liste der Stamme, welche auf Wunsch abgegeben wurden’, Archiv für Protistenkunde 68, 255–258.Google Scholar
  97. Radmer, R. and Kok, B.: 1977, ‘Photosynthesis: Limited yields, unlimited dreams’, BioScience 27, 599–605.CrossRefGoogle Scholar
  98. Richmond, A.: 2000, ‘Microalgal biotechnology at the turn of the millenium: A personal view’, Journal of Applied Phycology 12, 441–451.CrossRefGoogle Scholar
  99. Richmond, A., Cheng-Wu, Z. and Zarmi, Y.: 2003, ‘Efficient use of strong light for high photosynthetic productivity: Interrelationships between the optical path, the optimal population density and cell-growth inhibition’, Biomolecular Engineering 20(4–6), 229–236.CrossRefGoogle Scholar
  100. RITE: 2004, Research Projects. Available from
  101. Roessler, P.G.: 1988a, ‘Changes in the activities of various lipid and carbohydrate biosynthetic enzymes in the diatom Cyclotella cryptica in response to silicon deficiency’, Archives of Biochemistry and Biophysics 267(2), 521–528.CrossRefGoogle Scholar
  102. Roessler, P.G.: 1988b, ‘Effects of silicon deficiency on lipid composition and metabolism in the diatom Cyclotella cryptica’, Journal of Phycology 24, 294–297.Google Scholar
  103. Rubin, E.S., Cooper, R.N., Frosch, R.A., Lee, T.H., Marland, G., Rosenfeld, A.R. and Stine, D.D.: 1992, ‘Realistic mitigation options for global warming’, Science 257, 148–149, 261–266.Google Scholar
  104. Salvucci, M.E., Portis, A.R.J. and Ogren, W.L.: 1985, ‘A soluble chloroplast protein catalyzes ribulosebiphosphate carboxylase/oxygenase activation in vivo’, Photosynthesis Research 7, 193– 201.CrossRefGoogle Scholar
  105. Sheehan, J., Dunahay, T., Benemann, J. and Roessler, P.: 1998, A Look Back at the U.S. Department of Energy's Aquatic Species Program – Biodiesel From Algae, Golden, CO, National Renewable Energy Institute, NREL/TP-580-24190, 328 pp.Google Scholar
  106. Smith, S.A. and Tabita, F.R.: 2003, ‘Positive and negative selection of mutant forms of prokaryotic (cyanobacterial) ribulose-1,5-bisphosphate carboxylase/oxygenase’, Journal of Molecular Biology 331(3), 557–569.CrossRefGoogle Scholar
  107. Sòrensen, B.: 1999, Long-terms scenarios for global energy supply and demand: Four global greenhouse mitigation scenarios, Denmark, Roskilde University, Institute 2, Energy and Environment Group.Google Scholar
  108. Spoehr, H.A. and Milner, H.W.: 1948, Chlorella as a Source of Food, Washington, DC, Carnegie Institution of Washington Yearbook, Vol. 47.Google Scholar
  109. Spoehr, H.A. and Milner, H.W.: 1949, ‘The chemical composition of Chlorella: Effect of environmental conditions’, Plant Physiology 24, 120–149.CrossRefGoogle Scholar
  110. Spreitzer, R.J. and Salvucci, M.E.: 2002, ‘Rubisco: Structure, regulatory interactions, and possibilities for a better enzyme’, Annual Review of Plant Biology 53, 449–475.CrossRefGoogle Scholar
  111. Sukenik, A., Falkowski, P. and Benet, J.: 1987, ‘Potential enhancement of photosynthetic energy conversion in algal mass culture’, Biotechnology and Bioengineering 30, 970–977.CrossRefGoogle Scholar
  112. Swisher, J. and Wilson, D.: 1993, ‘Renewable energy potentials’, Energy 18(5), 437–459.CrossRefGoogle Scholar
  113. Tadros, M.G. and Johansen, J.R.: 1988, ‘Physiological characterization of six lipid-producing diatoms from the southeastern United States’, Journal of Phycology 24(4), 445–452.Google Scholar
  114. Tamiya, H.: 1957, ‘Mass culture of algae’, Annual Review of Plant Physiology 8, 309–333.CrossRefGoogle Scholar
  115. Thomas, W.H., Seibert, D.L.R., Alden, M., Neori, A. and Eldridge, P.: 1984a, ‘Yields, photosynthetic efficiency, and proximate composition of dense marine microalgal cultures. I. Introduction and Phaeodactylum tricornutum experiments’, Biomass 5, 181–209.CrossRefGoogle Scholar
  116. Thomas, W.H., Seibert, D.L.R., Alden, M., Neori, A. and Eldridge, P.: 1984b, ‘Yields, photosynthetic efficiency, and proximate composition of dense marine microalgal cultures. II. Dunaliella primolecta and Tetraselmis suecica experiments’, Biomass 5, 211–225.CrossRefGoogle Scholar
  117. Tornabene, T.G., Holzer, G. and Peterson, S.L.: 1980, ‘Lipid profile of the halophilic alga, Dunaliella salina’, Biochemical and Biophysical Research Communications 96(3), 1349–1356.CrossRefGoogle Scholar
  118. Tornabene, T.G., Holzer, G., Lien, S. and Burris, N.: 1983, ‘Lipid composition of the nitrogen starved green alga Neochloris oleoabundans’, Enzyme and Microbial Technology 5(6), 435–440.CrossRefGoogle Scholar
  119. UNFCC: 1997, The Kyoto Protocol to the Convention on Climate Change, Bonn, Climate Change Secretariat.Google Scholar
  120. Usui, N. and Ikenouchi, M.: 1997, ‘Biological CO2 fixation and utilization project by RITE. 1. Highly-effective photobioreactor system’, Energy Conversion and Management 38(Suppl.), 487–492.CrossRefGoogle Scholar
  121. Warburg, O.: 1919, ‘Uber die Geschwindikeit der photochemischen Kohlensaüerzetzang in lebenden Zellen’, Biochimische Zeitschrift 100, 230–262.Google Scholar
  122. WEC: 1998, Global Transport and Energy Development: The Scope for Change, London, England, World Energy Council.Google Scholar
  123. Weissman, J.C. and Tillett, D.T.: 1992, Design and Operation of an Outdoor Microalgae Test Facility: Large-Scale System Results, Golden, Colorado, USA, National Renewable Energy Laboratory, NREL/MP-232-4174, pp. 32–56.Google Scholar
  124. Williams, R.H.: 1995, Variants of a Low CO2-Emitting Energy Supply System (LESS) for the World: Prepared for the IPCC Second Assessment Report Working Group IIa, Energy Supply Mitigation Options, Pacific Northwest Laboratories.Google Scholar
  125. Wolf, F.R.: 1983, ‘Botryococcus braunii: An unusual hydrocarbon-producing alga’, Applied Biochemistry and Biotechnology 8(3), 249–260.Google Scholar
  126. Wolf, F.R., Nonomura, A.M. and Bassham, J.: 1985, ‘Growth and branched hydrocarbon production in a strain of Botryococcus braunii (chlorophyta)’, Journal of Phycology 21(3), 388–396.CrossRefGoogle Scholar
  127. World Atlas: 1999, ‘World Atlas and Industry Guide 1999–2000’, The International Journal on Hydropower and Dams.Google Scholar
  128. Yamamoto, H.K., Yamaji, K. and Fujino, J.: 1999, ‘Evaluation of bioenergy resources with a global land use and energy model formulated with SD technique’, Applied Energy 63(2), 101–113.CrossRefGoogle Scholar
  129. Zarrouk, C.: 1966, Contribution à l'étude d'une cyanophycée. Influènce de divers facteurs physiques et chimiques sur la croissance et la photosynthèse de Spirulina maxima (Setch. et Gardner) Geitler, Paris, France, University of Paris.Google Scholar
  130. Zhekisheva, M., Boussiba, S., Khozin-Goldberg, I., Zarka, A. and Cohen, Z.: 2002, ‘Accumulation of oleic acid in Haematococcus pluvialis (Chlorophyceae) under nitrogen starvation or high is correlated with that of astaxanthin esters’, Journal of Phycology 38, 325–331.CrossRefGoogle Scholar
  131. Zhu, C.J. and Lee, Y.K.: 1997, ‘Determination of biomass dry weight in marine microalgae’, Journal of Applied Phycology 9, 189–194.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.International Center for Climate and Society, School of Ocean and Earth Science and TechnologyUniversity of HawaiiHonolulu
  2. 2.Department of Marine ScienceUniversity of Southern Mississippi

Personalised recommendations