Scaling Uncertainties in Estimating Canopy Foliar Maintenance Respiration for Black Spruce Ecosystems in Alaska

  • Xinxian Zhang
  • A. David McGuire
  • Roger W. Ruess
Article

Abstract

A major challenge confronting the scientific community is to understand both patterns of and controls over spatial and temporal variability of carbon exchange between boreal forest ecosystems and the atmosphere. An understanding of the sources of variability of carbon processes at fine scales and how these contribute to uncertainties in estimating carbon fluxes is relevant to representing these processes at coarse scales. To explore some of the challenges and uncertainties in estimating carbon fluxes at fine to coarse scales, we conducted a modeling analysis of canopy foliar maintenance respiration for black spruce ecosystems of Alaska by scaling empirical hourly models of foliar maintenance respiration (Rm) to estimate canopy foliar Rm for individual stands. We used variation in foliar N concentration among stands to develop hourly stand-specific models and then developed an hourly pooled model. An uncertainty analysis identified that the most important parameter affecting estimates of canopy foliar Rm was one that describes Rm at 0 C per g N, which explained more than 55% of variance in annual estimates of canopy foliar Rm. The comparison of simulated annual canopy foliar Rm identified significant differences between stand-specific and pooled models for each stand. This result indicates that control over foliar N concentration should be considered in models that estimate canopy foliar Rm of black spruce stands across the landscape. In this study, we also temporally scaled the hourly stand-level models to estimate canopy foliar Rm of black spruce stands using mean monthly temperature data. Comparisons of monthly Rm between the hourly and monthly versions of the models indicated that there was very little difference between the estimates of hourly and monthly models, suggesting that hourly models can be aggregated to use monthly input data with little loss of precision. We conclude that uncertainties in the use of a coarse-scale model for estimating canopy foliar Rm at regional scales depend on uncertainties in representing needle-level respiration and on uncertainties in representing the spatial variability of canopy foliar N across a region. The development of spatial data sets of canopy foliar N represents a major challenge in estimating canopy foliar maintenance respiration at regional scales.

Keywords

black spruce boreal forests canopy ecosystems maintenance respiration modeling spatial scaling temporal scaling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amthor, J.S., Chen, J.M., Clein, J.S., Frolking, S.E., Goulden, M.L., Grant, R.F., Kimball, J.S., King, A.W., McGuire, A.D., Nikolov, N.T., Potter, C.S., Wang, S. and Wofsy, S.C.: 2001, ‘Boreal forest CO2 exchange and evapotranspiration predicted by nine ecosystem process models: Intermodel comparisons and relationships to field measurements’, Journal of Geophysical Research – Atmospheres 106, 33,623–33,648.CrossRefGoogle Scholar
  2. Beltrami, H. and Mareschal, J.C.: 1991, ‘Recent warming in eastern Canada inferred from geothermal measurements’, Geophys. Res. Let. 18, 605–608.CrossRefGoogle Scholar
  3. Bergh, J., Linder, S., Lundmark, T. et al.: 1999, ‘The effect of water and nutrient availability on the productivity of Norway spruce in northern and southern Sweden’, Forest Ecology and Management 119, 51–62.CrossRefGoogle Scholar
  4. Bonan, G.B., and Van Cleve, K.: 1992, ‘Soil temperature, nitrogen mineralization, and carbon source-sink relationships in boreal forest’, Can. J. For. Res. 22, 629–639.CrossRefGoogle Scholar
  5. Burton, A.J., Pregitzer, K.S., Ruess, R.W., Hendrick, R.L. and Allen, M.F.: 2002, ‘Fine root respiration rates in North American forests: Effects of nitrogen concentration and temperature across biomes’, Oecologia 131, 559–568.CrossRefGoogle Scholar
  6. Chapman, W.L. and Walsh, J.E.: 1993, ‘Recent variations of sea ice and air temperatures in high latitudes’, Bull. Am. Meteor. Soc. 74, 33–47.CrossRefGoogle Scholar
  7. Chapin, F.S., III, Vitousek, P.M. and Van Cleve, K.: 1986, ‘The nature of nutrient limitation in plant communities’, American Naturalist 127, 48–58.CrossRefGoogle Scholar
  8. Chapin, F.S. III, Shaver, G.R., Giblin, A.E., Nadelhoffer, K.J. and Laundre, J.A.: 1995, ‘Responses of arctic tundra to experimental and observed changes in climate’, Ecology 76, 694–711.CrossRefGoogle Scholar
  9. Clein, J.S., McGuire, A.D., Zhuang, X., Kicklighter, D.W., Melillo, J.M., Wofsy, S.C., Jarvis, P.G. and Massheder, J.M.: 2002, ‘Historical and projected carbon balances of mature black spruce ecosystems across North America: The role of carbon-nitrogen interactions’, Plant and Soil 242, 15–32.CrossRefGoogle Scholar
  10. Cramer, W., Kicklighter, D.W., Bondeau, A., Moore, B. III, Churkina, G., Nemry, B., Ruimy, A. and Schloss, A.L.: 1999, ‘The participates of the postdam NPP model intercomparison, Comparing global models of terrestrial net primary productivity (NPP) overview and key results’, Global Change Biology 5(Suppl. 1), 1–15.CrossRefGoogle Scholar
  11. Dargaville, R., McGuire, A.D. and Rayner, P.: 2002, ‘Estimates of large–scale fluxes in high latitudes from terrestrial biosphere models and an inversion of atmospheric CO2 measurements’, Climatic Change 55, 273–285.CrossRefGoogle Scholar
  12. Dargaville, R.J., Heimann, M., McGuire, A.D., Prentice, I.C., Kicklighter, D.W., Joos, F., Clein, J.S., Esser, G., Foley, J., Kaplan, J., Meier, R.A., Melillo, J.M., Moore, B. III, Ramankutty, N., Reichenau, T., Schloss, A., Sitch, S., Tian, H., Williams, L.J. and Wittenberg, U.: 2002, ‘Evaluation of terrestrial carbon cycle models with atmospheric CO2 measurements: Results from transient simulations considering increasing CO2, climate and land-use effects’, Global Biogeochemical Cycles 16, 1092, doi:10.1029/2001GB001426.Google Scholar
  13. Goodale, C.L., Apps, M.J., Birdsey, R.A., Field, C.B., Heath, L.S., Houghton, R.A., Jenkins, J.C., Kohlmaier, G.H., Kurz, W., Liu, S., Nabuurs, G., Nilsson, S. and Shvidenko, A.Z: 2002, ‘Forest carbon sinks in the Northern Hemisphere’, Ecological Applications 12, 891–899.CrossRefGoogle Scholar
  14. Goulden, M.L., Wofsy, S.C., Harden, J.W., Trumbore, S.E., Crill, P.M., Gower, S.T., Fries, T., Daube, B.C., Fan, S.M., Sutton, D.J., Bazzaz A. and Munger, W.: 1998, ‘Sensitivity of boreal forest carbon balance to soil thaw’, Science 279, 241–217.CrossRefGoogle Scholar
  15. Gower, S.T., Vogel, J.G., Norman, J.M., Kucharik, C.J., Steele, S.J. and Stow, T.K.: 1997, ‘Carbon distribution and aboveground net primary production in aspen, jack pine, and black spruce stands in Saskatchewan and Manitoba, Canada’, Journal of Geophysical Research – Atmospheres 102, 29,029–29,041.CrossRefGoogle Scholar
  16. Hall, F.G.: 1999, ‘Introduction to special section: BOREAS in 1999: Experimental and science perspective’, Journal of Geophysical Research – Atmospheres 104 (D22), 27,627–27,639.CrossRefGoogle Scholar
  17. Hall, F.G.: 2001, ‘Introduction to special section: BOREAS III’, Journal of Geophysical Research – Atmospheres 106(D24), 33,511–33,516.CrossRefGoogle Scholar
  18. Heimann, M., Esser, G.A., Haxeltine, J., Kaduk, D.W., Kicklighter, W., Knorr, G.H., McGuire, A.D., Melillo, J.M., Moore, B. III, Otto, R.D., Prentice, I.C., Sauf, W., Schloss, A., Sitch, S., Wittenberg, U. and Wurth, G.: 1998, ‘Evaluation of terrestrial carbon cycle models through simulations of the seasonal cycle of atmospheric CO2: First results of a model intercomparison study’, Global Biogeochemical Cycles 12, 1–24.CrossRefGoogle Scholar
  19. Hom, J.L. and Oechel, W.C.: 1983, ‘The photosynthetic capacity, nutrient content, and nutrient use efficiency of different needle age-classes of black spruce (Picea mariana) found in interior Alaska’, Can. J. For. Res. 13, 834–839.CrossRefGoogle Scholar
  20. Hubbard, R.M., Ryan, M.G. and Lukens, D.L.: 1995, ‘A simple, battery operated, temperature-controlled cuvette for respiration measurements’, Tree Physiology 15, 175–179.CrossRefGoogle Scholar
  21. Irving, D.E. and Silsbury, J.H.: 1987, ‘A comparison of the rate of maintenance respiration in some crop legumes and tobacco determined by three methods’, Annals of Botany 59, 257–264.CrossRefGoogle Scholar
  22. Jones, M.B., Leafe, E.L., Stiles, W. and Collett, B.: 1978, ‘Pattern of respiration of a perennial ryegradd crop in the field’, Annals of Botany 42, 693–703.CrossRefGoogle Scholar
  23. Kawahara, T., Hatiya, K., Takeuti, I. and Sato, A.: 1976, ‘Relationship between respiration rate and nitrogen concentration of trees’, Japanese Journal of Ecology 26, 165–170.Google Scholar
  24. Kicklighter, D.W., Bruno, M., Doenges, S., Esser, G. and Heimann, M.: 1999, ‘A first-order analysis of the potential role of CO2 fertilization to affect the global carbon budget: A comparison of four terrestrial biosphere models’, Tellus 51B, 343–366.CrossRefGoogle Scholar
  25. Kurz, W.A. and Apps, M.J.: 1999, ‘A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector’, Ecol. Appl. 9, 526–547.CrossRefGoogle Scholar
  26. Kurz, W.A., Apps, M., Banfield, E. and Stinson, G.: 2002, ‘Forest carbon accounting at the operational scale’, The Forestry Chronicle 78, 672–679.CrossRefGoogle Scholar
  27. Lavigne, M.B. and Ryan, M.G.: 1997, ‘Growth and maintenance respiration rates of aspen, black spruce and jack pine stems at northern and southern BOREAS sites’, Tree Physiology 17, 543–551.CrossRefGoogle Scholar
  28. Lusk, C.H. and Reich, P.B.: 2000, ‘Relationships of leaf dark respiration with light environment and tissue nitrogen in juveniles of 11 cold-temperate tree species’, Oecologia 123, 318–329.CrossRefGoogle Scholar
  29. McCree, K.J.: 1983, ‘Carbon balance as a function of plant size in sorghum plants’, Crop Science 23, 1173–1177.CrossRefGoogle Scholar
  30. McGuire, A.D., Melillo, J.M. and Joyce, L.A.: 1995a, ‘The role of nitrogen in the response of forest net primary production to elevated atmospheric carbon dioxide’, Annual Review of Ecology and Systematics 26, 473–503.CrossRefGoogle Scholar
  31. McGuire, A.D., Mellillo, J.M., Kicklighter, D.W. and Joyce, L.A.: 1995b, ‘Equilibrium responses of soil carbon to climate change: Empirical and process-based estimates’, Journal of Biogeography 22, 785–796CrossRefGoogle Scholar
  32. McGuire, A.D., Melillo, J.M., Kicklighter, D.W., Pan, Y., Xiao, X., Helfrich, J., Moore, B. III, Vorosmarty, C.J. and Schloss, A.L.: 1997, ‘Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon dioxide: Sensitivity to changes in vegetation nitrogen concentration’, Global Biogeochemical Cycles 11, 173–189.CrossRefGoogle Scholar
  33. McGuire, A.D., Sitch, S., Clein, J.S., Dargaville, R., Esser, G., Foley, J., Heimann, M., Joos, F., Kaplan, J., Kicklighter, D.W., Meier, R.A., Melillo, J.M., Moore, B. III, Prentice, I.C., Ramankutty, N., Reichenau, T., Schloss, A., Tian, H., Williams, L.J. and Wittenberg, U.: 2001, ‘Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land-use effects with four process-based ecosystem models’, Global Biogeochemical Cycles 15, 183–206.CrossRefGoogle Scholar
  34. McGuire, A.D., Wirth, C., Apps, M., Beringer, J., Clein, J., Epstein, H., Kicklighter, D.W., Bhatti, J., Chapin, F.S., III, de Groot, B., Efremov, D., Eugster, W., Fukuda, M., Gower, T., Hinzman, L., Huntley, B., Jia, G.J., Kasischke, E., Melillo, J., Romanovsky, V., Shvidenko, A., Vaganov, E. and Walker, D.: 2002, ‘Environmental variation, vegetation distribution, carbon dynamics, and water/energy exchange in high latitudes’, J. Vegetation Sci. 13, 301–314.CrossRefGoogle Scholar
  35. McGuire, A.D., Sturm, M. and Chapin, F.S., III: 2003, ‘Arctic Transitions in the Land-Atmosphere System (ATLAS): Background, objectives, results, and future directions’, Journal of Geophysical Research – Atmospheres 108(D2), 8166, doi:10.1029/2002JD002367.CrossRefGoogle Scholar
  36. Merino, J., Field, C. and Mooney, H.A.: 1982, ‘Construction and maintenance costs of Mediterranean-climate evergreen and deciduous leaves. I. Growth and CO2 exchange analysis’, Oecologia 53, 208–213.CrossRefGoogle Scholar
  37. Myneni, R.B., Keeling, C.D., Tucker, C.J., Asrar, G. and Nemani, R.R: 1997, ‘Increased plant growth in the northern high latitudes from 1981 to 1991’, Nature 386, 698–702.CrossRefGoogle Scholar
  38. Myneni, R.B, Dong, J., Tucker, C.J., Kaufmann, R.K., Kauppi, P.E., Liski, J., Zhou, L., Alexeyev, V. and Hughes, M.K.: 2001, ‘A large carbon sink in the woody biomass of northern forests’, Proc. Natl. Acad. Sci. USA 98, 14784–14789.CrossRefGoogle Scholar
  39. Oechel, W.C., Hastings, S.J., Vourlitis, G.L., Jenkins, M., Reichers, G. and Grulke, N.: 1993, ‘Recent change of arctic tundra ecosystems from a net carbon dioxide sink to a source’, Nature 361, 520–523.CrossRefGoogle Scholar
  40. Oechel, W.C., Vourlitis, G.L., Hastings, S.J., and Bochkarev, S.A.: 1995, ‘Change in arctic CO2 flux over two decades: Effects of climate change at Barrow, Alaska’, Ecol. Appl. 5, 846–855.CrossRefGoogle Scholar
  41. Oechel, W.C., Vourlitis, G.L., Hastings, S.J., Zuleta, R.C., Hinzman, L., Kane, D.: 2000, ‘Acclimation of ecosystem CO2 exchange in Alaskan Arctic in response to decadal climate warming’, Nature 406, 978–981.CrossRefGoogle Scholar
  42. Osterkamp, T.E. and Romanovsky, V.E.: 1999, ‘Evidence for warming and thawing of discontinuous permafrost in Alaska’, Permafrost and Periglacial Processes 10, 17–37.CrossRefGoogle Scholar
  43. Potter, C., Wang, S., Nikolov, N.T., McGuire, A.D., Liu, J., King, A.W., Kimball, J.S., Grant, R.F., Frolking, S.E., Clein, J.S., Chen, J.M. and Amthor, J.S.: 2001, ‘Comparison of boreal ecosystem model sensitivity to variability in climate and forest site parameters’, Journal of Geophysical Research – Atmospheres 106, 33,671–33,688.CrossRefGoogle Scholar
  44. Prentice, I.C., Farquhar, G.D., Fasham, M.J.R., Goulden, M.L., Heimann, M., Jaramillo, V.J., Kheshgi, H.S., Le Quere, C., Scholes, R.J. and Wallace, D.W.R.: 2001, ‘The carbon cycle and atmospheric carbon dioxide, in J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. Van der Linden, X. Dai, K. Maskell and C.A Johnson (eds.), Climate Change 2001: The Scientific Basis, Cambridge, Cambridge University Press, pp. 183–237.Google Scholar
  45. Raich, J.W., Rastetter, E.B., Mellillo, J.M., Kicklighter, D.W., Steudler, P.A. and Peterson, B.J.: 1991, ‘Potential net primary productivity in South America: Application of a global model’, Ecological Applications 1, 399–429.CrossRefGoogle Scholar
  46. Randerson, J.T., Field, C.B., Fung, I.Y. and Tans, P.P.: 1999, ‘Increases in early season net ecosystem uptake explain changes in the seasonal cycle of atmospheric CO2 at high northern latitudes’, Geophysical Research Letters 26, 2765–2768.CrossRefGoogle Scholar
  47. Rastetter, E.B., King, A.W., Cosby, B.J., Hornberger, G.M., O'Neill, R.V. and Hobbie, J.E.: 1992, ‘Aggregating fine-scale ecological knowledge to model coarser-scale attributes of ecosystems’, Ecological Applications 2, 55–70.CrossRefGoogle Scholar
  48. Reich, P.B., Walters, M.B., Ellsworth, D.S., Vose, J.M., Volin, J.C., Gresham, C., Bowman, W.D.: 1998, ‘Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: A test across biomes and functional groups’, Oecologia 114, 471–482.CrossRefGoogle Scholar
  49. Ruess, R.W., Hendrick, R.L., Burton, A.J., Pregitzer, K.S., Sveinbjornsson, B., Allen, M.F. and Maurer, G.E.: 2003, ‘Coupling fine root dynamics with ecosystem carbon cycling in black spruce forests of interior Alaska’, Ecological Monographs 73, 643–662.CrossRefGoogle Scholar
  50. Ryan, M.G.: 1991, ‘The effect of climate change on plant respiration’, Ecological Applications 1, 157–167.CrossRefGoogle Scholar
  51. Ryan, M.G.: 1995, ‘Foliar maintenance respiration of subalpine and boreal trees and shrubs in relation to nitrogen content’, Plant, Cell and Environment 18, 765–772.CrossRefGoogle Scholar
  52. Ryan, M.G., Lavigne, M.B. and Gower, S.T.: 1997, ‘Annual carbon cost of autotrophic respiration in boreal forest ecosystems in relation to species and climate’, Journal of Geophysical Research – Atmospheres 102(D24), 28,871–28,883.CrossRefGoogle Scholar
  53. Schimel, D.S., House, J.I., Hibbard, K.A., Bousquet, P., Ciais, P., Peylin, P., Braswell, B.H., Apps, M.J., Baker, D., Bondeau, A., Canadell, J., Churkina, G., Cramer, W., Denning, A.S., Field, C.B., Friedlingstein, P., Goodale, C., Heimann, M., Houghton, R.A., Melillo, J.M., Moore, B. III, Murdiyarso, D., Noble, I., Pacala, S.W., Prentice, I.C., Raupach, M.R., Rayner, P.J., Scholes, R.J., Steffen, W.L. and Wirth, C.: 2001, ‘Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems’, Nature 414, 169–172.CrossRefGoogle Scholar
  54. Sellers, P.J., Hall, F.G., Kelly, R.D., Black, A., Baldocchi, D., Berry, J., Ryan, M., Jon Ranson, K., Crill, P.M., Lettenmaier, D.P., Margolis, H., Cihlar, J., Newcomer, J., Fitzjarrald, D., Jarvis, P.G., Gower, S.T., Halliwell, D., Williams, D., Goodison, B., Wickland, D.E. and Guertin, F.E.: 1997, ‘BOREAS in 1997: Experiment overview, scientific results, and future directions’, Journal of Geophysical Research – Atmospheres 102(D24), 28,731–28,769.CrossRefGoogle Scholar
  55. Serreze, M.C., Walsh, J.E., Chapin, F.S., III, Osterkamp, T., Dyurgerov, M., Romanovsky, V., Oechel, W.C., Morison, J., Zhang, T. and Barry, R.G.: 2000, ‘Observational evidence of recent change in the northern high-latitude environment’, Climatic Change 46, 159–207.CrossRefGoogle Scholar
  56. Stromgren, M. and Linder, S.: 2002, ‘Effects of nutrition and soil warming on stemwood production in a boreal Norway spruce stand’, Global Change Biology 8, 1195–1204.CrossRefGoogle Scholar
  57. Thornley, F.H. and Cannell, M.G.R.: 2000, ‘Modelling the components of plant respiration: Representation and realism’, Annals of Botany 85, 55–67.CrossRefGoogle Scholar
  58. Turner, M.G., Wu, Y., Wallace, L.L., Romme, W.H. and Brenkert, A.: 1994, ‘Simulating winter interactions among ungulates vegetation and fire in northern Yellowstone Park’, Ecological Applications 4, 472–496.CrossRefGoogle Scholar
  59. Van Cleve, K. and Zasada, J.: 1976, ‘Response of 70-year-old white spruce to thinning and fertilization in interior Alaska’, Can. J. For. Res. 6, 145–152.CrossRefGoogle Scholar
  60. Van Cleve, K., Barney, R. and Schlentner, R.: 1981, ‘Evidence of temperature control of production and nutrient cycling in two interior Alaska black spruce ecosystems’, Canadian Journal Forest Research 11, 259–273.CrossRefGoogle Scholar
  61. Van Cleve, K., Oechel, W.C. and Hom, J.L.: 1990, ‘Response of black spruce (Picea mariana) ecosystems to soil temperature modification in interior Alaska’, Can. J. For. Res. 20, 1530–1535.CrossRefGoogle Scholar
  62. Viereck, L.A. and Dyrness, C.T.: 1986, ‘Forest ecosystem distribution in the taiga environment’, in K. Van Cleve, F.S. Chapin, III, P.W. Flanagan, L.A. Viereck and C.T. Dyrness (eds.), Forest Ecosystems in the Alaskan Taiga: A Synthesis of Structure and Function, New York, Springer-Verlag, pp. 22–43.Google Scholar
  63. Vitousek, P.M. and Howarth, R.W.: 1991, ‘Nitrogen limitation on land and in the seas: How can it occur?’, Biogeochemistry 13, 87–115.CrossRefGoogle Scholar
  64. Waring, R.H., McDonald, A.J., Larsson, S., Ericsson, T., Win Arwidsson, E., Ericsson, A. and Lohammar, T.: 1985, ‘Different chemical composition of plants grown at constant relative growth rates with stable mineral nutrition’, Oecologia 66, 157–160.CrossRefGoogle Scholar
  65. Yarie, J.: 1997, ‘Nitrogen productivity of Alaskan tree species at an individual tree and landscape level’, Ecology 78, 2351–2358.CrossRefGoogle Scholar
  66. Zhou, L., Tucker, C.J., Kaufmann, R.K., Slayback, D., Shabanov, N.V. and Myneni, R.B.: 2001, ‘Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999’, Journal of Geophysical Research – Atmospheres 106, 20,069–20,083.CrossRefGoogle Scholar
  67. Zhuang, Q., McGuire, A.D., Melillo, J.M., Clein, J.S., Dargaville, R.J., Kicklighter, D.W., Myneni, R.B., Dong, J., Romanovsky, V.E., Harden, J. and Hobbie, J.E.: 2003, ‘Carbon cycling in extratropical ecosystems of the Northern Hemisphere during the 20th Century: A modeling analysis of the influences of soil thermal dynamics’, Tellus 55B, 751–776.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Xinxian Zhang
    • 1
  • A. David McGuire
    • 2
  • Roger W. Ruess
    • 3
  1. 1.Department of Biology and WildlifeUniversity of Alaska FairbanksFairbanks
  2. 2.U.S. Geological Survey, Alaska Cooperative Fish and Wildlife Research UnitUniversity of Alaska FairbanksFairbanks
  3. 3.Institute of Arctic BiologyUniversity of Alaska FairbanksFairbanks

Personalised recommendations