Forest Fires and Climate Change in the 21ST Century

  • M. D. Flannigan
  • B. D. Amiro
  • K. A. Logan
  • B. J. Stocks
  • B. M. Wotton
Article

Abstract

Fire is the major stand-renewing disturbance in the circumboreal forest. Weather and climate are the most important factors influencing fire activity and these factors are changing due to human-caused climate change. This paper discusses and synthesises the current state of fire and climate change research and the potential direction for future studies on fire and climate change. In the future, under a warmer climate, we expect more severe fire weather, more area burned, more ignitions and a longer fire season. Although there will be large spatial and temporal variation in the fire activity response to climate change. This field of research allows us to better understand the interactions and feedbacks between fire, climate, vegetation and humans and to identify vulnerable regions. Lastly, projections of fire activity for this century can be used to explore options for mitigation and adaptation.

Keywords

climate change carbon forest fires GCMs area burned 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amiro, B.D.: 2001, ‘Paired-tower measurements of carbon and energy fluxes following disturbance in the boreal forest’, Global Change Biol. 7, 253–268.CrossRefGoogle Scholar
  2. Amiro, B.D., Barr, A.G., Black, T.A., Iwashita, H., Kljun, N., JMcCaughey, J.H., Morgenstern, K., Murayama, S., Nesic, Z., Orchansky, A.L. and Saigusa, N.: 2005, ‘Carbon, energy and water fluxes at mature and disturbed forest sites, Saskatchewan, Canada’, Agric. and Forest Meteorol. In press.Google Scholar
  3. Amiro, B.D., MacPherson, J.I., Desjardins, R.L., Chen, J.M. and Liu, J.: 2003, ‘Post-fire carbon dioxide fluxes in the western Canadian boreal forest: Evidence from towers, aircraft and remote sensing’, Agric. and Forest Meteorol. 115, 91–107.CrossRefGoogle Scholar
  4. Amiro, B.D., Todd, J.B., Wotton, B.M., Logan, K.A., Flannigan, M.D., Stocks, B.J., Mason, J.A., Martell, D.L. and Hirsch, K.G.: 2001, ‘Direct carbon emissions from Canadian forest fires, 1959 to 1999’, Can. J. For. Res. 31, 512–525.CrossRefGoogle Scholar
  5. Anderson, K.: 2002, ‘A model to predict lightning-caused fire occurrences’, Intl J. Wildland Fire 11, 163–172.CrossRefGoogle Scholar
  6. Baldocchi, D.D. et al.: 2001, ‘FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor and energy flux densities’, Bull. Am. Meteorol. Soc. 82, 2415–2434.CrossRefGoogle Scholar
  7. Bergeron, Y. and Flannigan, M.D.: 1995, ‘Predicting the effects of climate change on fire frequency in the southeastern Canadian boreal forest’, Water, Air, Soil Pollut. 82, 437–444.CrossRefGoogle Scholar
  8. Bergeron, Y., Flannigan, M., Gauthier, S., Leduc, A. and Lefort, P.: 2004, ‘Past, current and future fire frequency in the Canadian boreal forest: Implications for sustainable forest management’, Ambio 33, 356–360.CrossRefGoogle Scholar
  9. Chambers, S.D. and Chapin III, F.S.: 2002, ‘Fire effects on surface-atmosphere energy exchange in Alaskan black spruce ecosystems: Implications for feedbacks to regional climate’, J. Geophys. Res. 107, doi:10.1029/2001JD000530.Google Scholar
  10. Duffy, P.A., Walsh, J.E., Graham, J.M., Mann, D.H. and Rupp, T.S.: 2005, ‘Impacts of large scale atmospheric – ocean variability on Alaskan fire season severity’, Ecolog. Applic. In press.Google Scholar
  11. Flannigan, M.D., Bergeron, Y., Engelmark, O. and Wotton, B.M.: 1998, ‘Future wildfire in circumboreal forests in relation to global warming’, J. Vegetat. Sci. 9, 469–476.CrossRefGoogle Scholar
  12. Flannigan, M.D., Logan, K.A., Amiro, B.D., Skinner, W.R. and Stocks, B.J.: 2005, ‘Future area burned in Canada’, Climatic Change, In press.Google Scholar
  13. Flannigan, M.D., Stocks, B.J. and Wotton, B.M.: 2000, ‘Forest fires and climate change’, Sci, of the Total Environ 262, 221–230.CrossRefGoogle Scholar
  14. Flannigan, M.D. and Wotton, B.M.: 2001, ‘Climate, weather and area burned’, in E.A. Johnson and K. Miyanishi (eds.), Forest Fires: Behavior & Ecological Effects, Academic Press, pp. 335–357.Google Scholar
  15. Flannigan, M.D. and Van Wagner, C.E.: 1991, ‘Climate Change and wildfire in Canada’, Can. J. For. Res. 21, 66–72.CrossRefGoogle Scholar
  16. Fleming, R.A., Candau, J-N. and McAlpine, R.S.: 2002, ‘Landscape-scale analysis of interactions between insect defoliation and forest fire in central Canada, Climatic Change 55, 251–272.CrossRefGoogle Scholar
  17. Gillett, N.P., Weaver, A.J., Zwiers, F.W. and Flannigan, M.D.: 2004, ‘Detecting the effect of climate change on Canadian forest fires’, Geophys. Res. Lett. 31(18), L18211, doi:10.1029/ 2004GL020876.Google Scholar
  18. Hely, C., Flannigan, M.D. and Bergeron, Y.: 2003, ‘Modeling tree mortality following wildfire in the southeastern Canadian mixed-wood boreal forest’, For. Sci. 49, 566–576.Google Scholar
  19. Intergovernmental Panel on Climate Change: 2001, Climate Change 2001 The Scientific Basis, Cambridge University Press, Cambridge.Google Scholar
  20. Johnson, E.A.: 1992, Fire and Vegetation Dynamics: Studies from the North American Boreal Forest, Cambridge University Press, Cambridge, 125 pp.CrossRefGoogle Scholar
  21. Johnston, M.: 2001, ‘Sensitivity of boreal forest landscapes to climate change. SRC’ Publication No. 11341-6E01. Prepared for the Government of Canada's Climate Change Action Fund. Saskatchewan Research Council, Saskatoon, SK.Google Scholar
  22. Keane, R.E., Cary, G., Davies, I.D., Flannigan, M.D., Gardner, R.H., Lavorel, S., Lenihan, J.M., Li, C. and Rupp, T.S.: 2004, ‘A classification of landscape fire succession models: Spatially explicit models of fire and vegetation dynamics’, Eco. l. Mod. 179, 3–27.CrossRefGoogle Scholar
  23. Keane, R.E., Cary, G., Davies, I.D., Flannigan, M.D., Gardner, R.H., Lavorel, S., Lenihan, J.M., Li, C. and Rupp, T.S.: 2005, ‘Understanding global fire dynamics by classifying and comparing spatial models of vegetation and fire dynamics’, in J. Canell, D. Patalki and L. Patalka (eds.), Terrestrial Ecosystems in a Changing World. GCTE Synthesis Book, Cambridge University Press, Cambridge, U.K.Google Scholar
  24. Kurz, W.A., Apps, M.J., Stocks, B.J. and Volney, W.J.A.: 1994, ‘Global climate change: Disturbance regimes and biospheric feedbacks of temperate and boreal forests’, in G. Woodwell (ed.), Biotic Feedbacks in the Global Climate System: Will the Warming Speed the Warming? Oxford Univ. Press, Oxford, UK, pp. 119–133.Google Scholar
  25. Lavorel, S., Flannigan, M.D., Lambin, E.F. and Scholes, M.C.: 2005, ‘Vulnerability of land systems to fire: Interactions between humans, climate, the atmosphere and ecosystems’, Mitigation and Adaptation Strategies for Global Change, In press.Google Scholar
  26. Lenihan, J.M., Daly, C., Bachelet, D. and Neilson, R.P.: 1998, ‘Simulating broad-scale fire severity in a dynamic global vegetation model’, Northwest Science 72, 91–103.Google Scholar
  27. Litvak, M., Miller, S., Wofsy, S.C. and Goulden, M.: 2003, ‘Effect of stand age on whole ecosystem CO2 exchange in the Canadian boreal forest’, J. Geophys. Res. doi:10.1029/2001JD000854.Google Scholar
  28. Liu, H.P., Randerson, J.T., Lindfors, J. and Chapin III, F.S.: 2005, ‘Changes in the surface energy budget following fire in boreal ecosystems of interior Alaska: An annual perspective’, J. Geophys. Res, In press.Google Scholar
  29. Lupo, A.R., Oglesby, R.J. and Mokhov, I.I.: 1997, ‘Climatological features of blocking anticyclones: A study of Northern Hemisphere CCM1 model blocking events in present-day and double CO2 concentration atmosphere’, Clim. Dynam. 13, 181–195.CrossRefGoogle Scholar
  30. Lyons, W.A., Nelson, T.E., Williams, E.R., Cramer, J.A. and Turner, T.R.: 1998, ‘Enhanced positive cloud-to-ground lightning in thunderstorms ingesting smoke from fires’, Science 282, 80.CrossRefGoogle Scholar
  31. McAlpine, R.S. and Hirsch, K.G.: 1999, ‘An overview of Leopards: The level of protection analysis system’, For. Chron. 75, 615–621.CrossRefGoogle Scholar
  32. Mearns, L.O., Schneider, S.H., Thompson, S.L. and McDaniel, L.R.: 1989, ‘Climate variability statistics from General Circulation models as applied to climate change analysis’, in G.P. Malanson, (ed.), pp. 51–73. ‘Natural Areas Facing Climate Change’, SPB Academic Publishing, The Hague.Google Scholar
  33. Price, C. and Rind, D.: 1994, ‘The impact of a 2 × CO2 Climate on lightning-caused fires’, J. Clim. 7, 1484–1494.CrossRefGoogle Scholar
  34. Rosenfeld, D.: 1999, ‘TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall’, Geophys. Res. Let. 26, 3105–3108.CrossRefGoogle Scholar
  35. Simmonds, P.G., Manning, A.J., Derwent, R.G., Ciais, P., Ramonet, M., Kazan, V. and Ryall, D.: 2005, ‘A burning question. Can recent growth rate anomalies in the greenhouse gases be attributed to large-scale biomass burning events’, Atmospheric Environ. 39, 2513–2517.CrossRefGoogle Scholar
  36. Skinner, W.R., Flannigan, M.D., Stocks, B.J., Martell, D.M., Wotton, B.M., Todd, J.B. Mason, J.A., Logan, K.A. and Bosch, E.M.: 2001, ‘A 500 mb synoptic wildland fire climatology from large Canadian forest fires, 1959-1996’, Theoret. Appl. Climatol. 71, 157–169.CrossRefGoogle Scholar
  37. Skinner, W.R., Stocks, B.J., Martell, D.L., Bonsal, B. and Shabbar, A.: 1999, ‘The association between circulation anomalies in the mid-troposphere and area burned by wildland fire in Canada’, Theoret. Appl. Climatol. 63, 89–105.CrossRefGoogle Scholar
  38. Solomon, A.M. and Leemans, R.: 1997, ‘Boreal forest carbon stocks and wood supply: Past, present and future responses to changing climate, agriculture and species availability’, Agric. For. Meteorol. 84, 137–151.CrossRefGoogle Scholar
  39. Stocks, B.J.: 1993, ‘Global warming and forest fires in Canada’, For. Chron. 69, 290–293.CrossRefGoogle Scholar
  40. Stocks, B.J., Fosberg, M.A., Lynham, T.J., Mearns, L., Wotton, B.M., Yang, Q., Jin, J-Z., Lawrence, K., Hartley, G.R., Mason, J.A. and McKenney, D.W.: 1998, ‘Climate change and forest fire potential in Russian and Canadian boreal forests’, Climatic Change 38, 1–13.CrossRefGoogle Scholar
  41. Stocks, B.J., Mason, J.A., Todd, J.B., Bosch, E.M., Wotton, B.M., Amiro, B.D., Flannigan, M.D., Hirsch, K.G., Logan, K.A., Martell, D.L. and Skinner, W.R.: 2002, ‘Large forest fires in Canada, 1959–1997’, J. Geophys. Res. 107, 8149, doi:10.1029/2001JD000484.Google Scholar
  42. Swetnam, T.W.: 1993, ‘Fire history and climate change in giant sequoia groves’, Science 262, 885–889.CrossRefGoogle Scholar
  43. Thonicke, K., Venevsky, S., Sitch, S. and Cramer, W.: 2001, ‘The role of fire disturbance for global vegetation dynamics: Coupling fire into a Dynamic Vegetation Model’, Global Ecology and Biogeogr. 10, 661–678.CrossRefGoogle Scholar
  44. Weber, M.G. and Flannigan, M.D.: 1997, ‘Canadian boreal forest ecosystem structure and function in a changing climate: Impacts on fire regimes’, Environ. Rev. 5, 145–166.CrossRefGoogle Scholar
  45. Wotton, B.M. and Flannigan, M.D.: 1993, ‘Length of the fire season in a changing climate’, For. Chron. 69, 187–192.CrossRefGoogle Scholar
  46. Wotton, B.M., Martell, D.L. and Logan, K.A.: 2003, ‘Climate change and people-caused forest fire occurrence in Ontario’, Climatic Change 60, 275–295.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • M. D. Flannigan
    • 1
  • B. D. Amiro
    • 2
    • 3
  • K. A. Logan
    • 1
  • B. J. Stocks
    • 1
  • B. M. Wotton
    • 1
  1. 1.Canadian Forest ServiceSault Ste MarieCanada
  2. 2.Canadian Forest ServiceEdmontonCanada
  3. 3.Department of Soil ScienceUniversity of ManitobaWinnipegCanada

Personalised recommendations