Net Carbon Exchange Across the Arctic Tundra-Boreal Forest Transition in Alaska 1981–2000

  • C. C. Thompson
  • A. D. McGuire
  • J. S. Clein
  • F. S. ChapinIII
  • J. Beringer
Article

Abstract

Shifts in the carbon balance of high-latitude ecosystems could result from differential responses of vegetation and soil processes to changing moisture and temperature regimes and to a lengthening of the growing season. Although shrub expansion and northward movement of treeline should increase carbon inputs, the effects of these vegetation changes on net carbon exchange have not been evaluated. We selected low shrub, tall shrub, and forest tundra sites near treeline in northwestern Alaska, representing the major structural transitions expected in response to warming. In these sites, we measured aboveground net primary production (ANPP) and vegetation and soil carbon and nitrogen pools, and used these data to parameterize the Terrestrial Ecosystem Model. We simulated the response of carbon balance components to air temperature and precipitation trends during 1981–2000. In areas experiencing warmer and dryer conditions, Net Primary Production (NPP) decreased and heterotrophic respiration (R H ) increased, leading to a decrease in Net Ecosystem Production (NEP). In warmer and wetter conditions NPP increased, but the response was exceeded by an increase in R H ; therefore, NEP also decreased. Lastly, in colder and wetter regions, the increase in NPP exceeded a small decline in R H , leading to an increase in NEP. The net effect for the region was a slight gain in ecosystem carbon storage over the 20 year period. This research highlights the potential importance of spatial variability in ecosystem responses to climate change in assessing the response of carbon storage in northern Alaska over the last two decades.

Keywords

net carbon exchange net primary productivity Alaskan Arctic tundra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barber, V.A., Juday, G.P. and Finney, B.P.: 2000, ‘Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress’, Nature 405, 668–673.CrossRefGoogle Scholar
  2. Bonan, G.B., Chapin, III, F.S. and Thompson, S.L.: 1995, ‘Boreal forest and tundra ecosystems as components of the climate system’, Climatic Change 29, 145–167.CrossRefGoogle Scholar
  3. Braswell, B.H., Sacks, W.J., Linder, E. and Schimel, D.S.: 2005, ‘Estimating diurnal to annual ecosystem parameters by synthesis of a carbon flux model with eddy covariance net ecosystem exchange observations’, Global Change Biology 11, 335–355.CrossRefGoogle Scholar
  4. Bret-Harte, M.S., Shaver, G.R. and Chapin, III, F.S.: 2002, ‘Primary and secondary stem growth in arctic shrubs: Implications for community response to environmental change’, Journal of Ecology 90, 251–267.CrossRefGoogle Scholar
  5. Bret-Harte, M.S., Shaver, G.R., Zoerner, J.P., Johnston, J.F., Wagner, J.L., Chavez, A.S., Gunkelman, IV, R.F., Lippert, S.C. and Laundre, J.A.: 2001, ‘Developmental plasticity allows Betula nana to dominate tundra subjected to an altered environment’, Ecology 82, 18–32.CrossRefGoogle Scholar
  6. Clein, J.S., Kwiatkowski, B.L., McGuire, A.D., Hobbie, J.E., Rastetter, E.B., Melillo, J.M. and Kicklighter, D.W.: 2000, ‘Modelling carbon responses of tundra ecosystems to historical and projected climate: A comparison of a plot- and a global-scale ecosystem model to identify process-based uncertainties’, Global Change Biology 6, 127–140.CrossRefGoogle Scholar
  7. Fleming, M.D., Chapin, III, F.S., Cramer, W., Hufford, G.L. and Serreze, M.C.: 2000, ‘Geographic patterns and dynamics of Alaskan climate interpolated from a sparse station record’, Global Change Biology 6, 49–58.CrossRefGoogle Scholar
  8. Gorham, E.: 1991, ‘Northern peatlands: Role in the carbon cycle and probable responses to climatic warming’, Ecological Applications 1, 182–195.CrossRefGoogle Scholar
  9. Hobbie, S.: 1996, ‘Temperature and plant species control over litter decomposition in Alaskan tundra’, Ecological Monographs 66, 503–522.CrossRefGoogle Scholar
  10. Hobbie, S.E. and Chapin, III., F.S.: 1998, ‘The response of tundra plant biomass, aboveground production, nitrogen and CO2 flux to experimental warming’, Ecology 79, 1526–1544.Google Scholar
  11. Le Dizes, S., Kwiatkowski, B.L., Rastetter, E.B., Hope, A., Hobbie, J.E., Stow, D. and Daeschner, S.: 2003, ‘Modeling biogeochemical responses of tundra ecosystems to temporal and spatial variations in climate in the Kuparuk River Basin (Alaska)’, Journal of Geophysical Research DOI 10.1029/2001JD000960.Google Scholar
  12. Lloyd, A.H. and Fastie, C.L.: 2002, ‘Spatial and temporal variability in the growth and climate response of treeline trees in Alaska’, Climatic Change 52, 481–509.CrossRefGoogle Scholar
  13. Mack, M.C., Schuur, E.A.G., Bret-Harte, M.S., Shaver, G.R. and Chapin, III., F.S.: 2004, ‘Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization’, Nature 431, 440–443.CrossRefGoogle Scholar
  14. McFadden, J.P., Eugster, W. and Chapin, III., F.S.: 2003, ‘A regional study of the controls on water vapor and CO2 fluxes in arctic tundra’, Journal of Ecology 84, 2762–2776.CrossRefGoogle Scholar
  15. McGuire, A.D., Melillo, J.M., Joyce, L.A., Kicklighter, D.W., Grace, A.L., Moore, III. B. and Vorosmarty, C.J.: 1992. ‘Interactions between carbon and nitrogen dynamics in estimating net primary productivity for potential vegetation in North America’, Global Biogeochemical Cycles 6, 101–124.CrossRefGoogle Scholar
  16. McGuire, A.D., Melillo, J.M., Kicklighter, D.W. and Joyce, L.A.: 1995, ‘Equilibrium responses of soil carbon to climate change: Empirical and process-based estimates’, Journal of Biogeography 22, 785–796.CrossRefGoogle Scholar
  17. Melillo, J.M., Kicklighter, D.W., McGuire, A.D., Peterjohn, W.T. and Newkirk, K.M.: 1995, ‘Global change and its effects on soil organic carbon stocks’, in R. G. Zepp and C. Sonntag (eds.), Role of Nonliving Organic Matter in the Earth’s Carbon Cycle., John Wiley & Sons Ltd., pp. 175–189.Google Scholar
  18. Michaelson, G.J. and Ping, C.L.: 2003. Soil organic carbon and CO2 respiration at subzero temperature in soils of Arctic Alaska, Journal of Geophysical Research DOI 10.1029/2001JD000920.Google Scholar
  19. Mitchell, T.D. and Jones, P.D.: 2005, ‘An improved method of constructing a database of monthly climate observations and associated high-resolution grids’, International Journal of Climatology 25, 693–712.CrossRefGoogle Scholar
  20. Muller, S.V., Racoviteanu, A.E. and Walker, D.A.: 1999, ‘Landsat MSS-derived land-cover map of northern Alaska: Extrapolation methods and a comparison with photo-interpreted and AVHRR-derived maps’, International Journal of Remote Sensing 20, 2921–2946.CrossRefGoogle Scholar
  21. Nadelhoffer, K.J., Giblin, A.E., Shaver, G.R. and Laundre, J.A.: 1991, ‘Effects of temperature and substrate quality on element mineralization in six arctic soils’, Ecology 72, 242–253.CrossRefGoogle Scholar
  22. Oechel, W.C. Hastings, S.J., Vourlitis, G., Jenkins, M., Riechers, G., and Grulke, N.: 1993, ‘Recent change of Arctic tundra ecosystems from a net carbon dioxide sink to a source’, Nature, 361, 520–523.CrossRefGoogle Scholar
  23. Oechel, W.C. and Van Cleve, K.: 1986, ‘The role of bryophytes in nutrient cycling in the Taiga’, in K. Van Cleve, F. S. Chapin, III, P. W. Flanagan, L. A. Viereck and C. T. Dyrness (eds.), Forest Ecosystems in the Alaskan Taiga. Springer-Verlag, New York, pp. 121–137.CrossRefGoogle Scholar
  24. Oechel, W.C., Vourlitis, G.L., Hastings, S.L., Zulueta, R.C., Hinzman, L. and Kane, D.: 2000, ‘Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming’, Nature 406, 978–981.CrossRefGoogle Scholar
  25. Prentice, I.C., Cramer, W., Harrison, S.P., Leemans, R., Monserud, R.A. and Solomon, A.M.: 1992, ‘A global biome model based on plant physiology and dominance, soil properties and climate’, Journal of Biogeography 19, 117–134.CrossRefGoogle Scholar
  26. Ryan, M.G., Lavigne, M.B. and Gower, S.T.: 1997, ‘Annual carbon cost of autotrophic respiration in boreal forest ecosystems in relation to species and climate’, Journal of Geophysical Research 102, 28861–28869.CrossRefGoogle Scholar
  27. Shaver, G.R., Billings, W.D., Chapin, III. F.S., Giblin, A.E., Nadelhoffer, K.J., Oechel, W.C. and Rastetter, E.B.: 1992, ‘Global change and the carbon balance of arctic ecosystems’, BioScience 42, 434–441.CrossRefGoogle Scholar
  28. Shaver, G.R., Bret-Harte, M.S., Jones, M.H., Johnstone, J., Gough, L., Laundre, J. and Chapin, III. F.S. : 2001, ‘Species compostion interacts with fertilizer to control long-term change in tundra productivity’, Ecology 82, 3163–3181.CrossRefGoogle Scholar
  29. Shaver, G.R., Canadell, J., Chapin, III. F.S., Gurevitch, J., Harte, J., Henry, G., Ineson, P., Jonasson, S., Melillo, J., Pitelka, L. and Rustad, L.: 2000, ‘Global warming and terrestrial ecosystems: A conceptual framework for analysis’, BioScience 50, 871–882.CrossRefGoogle Scholar
  30. Shaver, G.R. and Chapin, III, F.S.: 1986. Effect of fertilizer on production and biomass of tussock tundra, Alaska, U.S.A. Arctic and Alpine Research 18, 261–268.Google Scholar
  31. Silapaswan, C.S., Verbyla, D.L. and McGuire, A.D.: 2001, ‘Land cover change on the Seward Peninsula: The use of remote sensing to evaluate the potential influences of climate warming on historical vegetation dynamics’, Canadian Journal of Remote Sensing 27, 542–554.CrossRefGoogle Scholar
  32. Stieglitz, M., Giblin, A., Hobbie, J., Williams, M. and Kling, G.: 2000, ‘Simulating the effects of climate change and climate variability on carbon dynamics in Arctic tundra’, Global Biogeochemical Cycles 14, 1123–1136.CrossRefGoogle Scholar
  33. Stow, D.A., Hope, A., McGuire, D., Verbyla, D., Gamon, J., Huemmerich, F., Souston, S., Racine, C., Sturm, M., Tape, K., Hinzman, L., Yoshikawa, K., Tweedie, G., Noyle, B., Silapaswan, C., Douglas, D., Griffeth, B., Jia, G., Epstein, H., Walker, D., Daeschner, S., Petersen, A., Zhou, L. and Myneni, R.: 2003, ‘Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems’, Remote Sensing of Environment 89, 281–308.CrossRefGoogle Scholar
  34. Sturm, M., Racine, C. and Tape, K.: 2001, ‘Increasing shrub abundance in the Arctic’, Nature 411, 546–547.CrossRefGoogle Scholar
  35. Thompson, C.C., Beringer, J., Chapin, III, F.S. and McGuire, A.D.: 2004, ‘Relationship of structural complexity to land-surface energy exchange along a vegetation gradient from arctic tundra to boreal forest’, Journal of Vegetation Science 15, 397–406.CrossRefGoogle Scholar
  36. Waelbroeck, C., Monfray, P., Oechel, W.C., Hastings, S. and Vourlitis, G.: 1997, ‘The impact of permafrost thawing on the carbon dynamics of tundra’, Geophysical Research Letters 24, 229–232.CrossRefGoogle Scholar
  37. Wielgolaski, F.E., Bliss, L.C., Svoboda, J. and Doyle, G.: 1981, ‘Primary production of tundra’, in L. C. Bliss, J. B. Cragg, D. W. Heal and J. J. Moore (eds.), Tundra Ecosystems: A Comparative Analysis. Cambridge University Press.Google Scholar
  38. Williams, M., Schwartz, P.A., Law, B.E., Irvine, J. and Kurpius, M.R.: 2005, ‘An improved analysis of forest carbon dynamics using data assimilation’, Global Change Biology 11, 89–105.CrossRefGoogle Scholar
  39. Wilmking, M., Juday, G.P., Barber, V.A. and Zald, H.S.J.: 2005, ‘Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds’, Global Change Biology 10, 1724–1736.CrossRefGoogle Scholar
  40. Zhuang, Q., McGuire, A.D., Melillo, J.M., Clein, J.S., Dargaville, R.J., Kicklighter, D.W., Myneni, R.B., Romanovsky, V.E., Harden, J. and Hobbie, J.E.: 2003, ‘Carbon cycling in extratropical terrestrial ecosystems of the Northern Hemisphere during the 20th century: A modeling analysis of the influences of soil thermal dynamics’, Tellus 55B, 751–776.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • C. C. Thompson
    • 1
  • A. D. McGuire
    • 2
  • J. S. Clein
    • 3
  • F. S. ChapinIII
    • 3
  • J. Beringer
    • 4
  1. 1.Department of Biology and WildlifeUniversity of AlaskaFairbanksUSA
  2. 2.U.S. Geological Survey, Alaska Cooperative Fish and Wildlife Research UnitUniversity of AlaskaFairbanksUSA
  3. 3.Institute of Arctic BiologyUniversity of AlaskaFairbanksUSA
  4. 4.School of Geography and Environmental ScienceMonash UniversityClaytonAustralia

Personalised recommendations