Emissions and Atmospheric CO2 Stabilization: Long-Term Limits and Paths

  • Haroon S. Kheshgi
  • Steven J. Smith
  • James A. Edmonds
Article

Abstract

The objective of stabilization of greenhouse gas concentrations is often envisioned as a monotonic approach to higher constant concentrations. For CO2 to approach a constant concentration over a finite time, CO2 emissions must peak and then gradually approach zero over 1,000+ years, regardless of the concentration level. While this intellectual architecture has proved useful, we suggest consideration of a broader range of scenarios, including ones in which net emissions decline to zero over a finite period of time resulting in a maximum CO2 concentration followed by a long-term decline to a lower level. Carbon cycle model results illustrate these scenarios.

Keywords

carbon cycle CO2 emissions scenario stabilization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archer, D., Kheshgi, H. and Maier-Reimer, E.: 1998, ‘The dynamics of fossil fuel CO2 neutralization by marine CaCO3’, Gl. Biogeochem. Cycles 12, 259–276.CrossRefGoogle Scholar
  2. Bolin, B. and Kheshgi, H.: 2001, ‘On strategies for reducing greenhouse gas emissions’, Proc. Nat. Acad. Sci. U.S. of America 98, 4850–4854.CrossRefGoogle Scholar
  3. Bolin, B., Sukumar, R., Ciais, P., Cramer, W., Jarvis, P., Kheshgi, H., Nobre, C., Semenov, S. and Steffen,W.: 2000, ‘Global perspective’, in R.T.Watson et al. (eds.), Land Use, Land-Use Change, and Forestry: A Special Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, New York, pp. 23–51.Google Scholar
  4. Indermuehle, A., Stocker, T.F., Joss, F., Fischer, H., Smith, H.J.,Wahlen, M., Deck, B., Mastroianni, D., Tschumi, J., Blunier, T., Meyer, R. and Stauffer, B.: 1999, ‘Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica’, Nature 398, 121–126.CrossRefGoogle Scholar
  5. IPCC: 2001, Climate Change 2001: Synthesis Report, Cambridge University Press, New York, 397 pp.Google Scholar
  6. Kheshgi, H.S. and White, B.S.: 1996, ‘Modelling ocean carbon cycle with a nonlinear convolution model’, Tellus 48B, 3–12.Google Scholar
  7. Maier-Reimer, E. and Hasselmann, K.: 1987, ‘Transport and storage of CO2 in the ocean – An inorganic ocean-circulation carbon cycle model’, Clim. Dyn. 2, 63–90.CrossRefGoogle Scholar
  8. Orr, J., Maier-Reimer, E., Mikolajewicz, U., Monfray, P., Sarmiento, J.L., Toggweiler, J.R., Taylor, N.K., Palmer, J., Gruber, N., Sabine, C.L., Le Quéré, C., Key, R.M. and Boutin, J.: 2001, ‘Estimates of anthropogenic carbon uptake from four 3-D global ocean models’, Gl. Biogeochem. Cycles 15, 43–60.CrossRefGoogle Scholar
  9. Peng, T.-H., Takahashi, T., Broecker, W.S. and Olafsson, J.: 1987, ‘Seasonal variability of carbon dioxide, nutrients and oxygen in the northern North Atlantic surface water’, Tellus 39B, 439–458.Google Scholar
  10. Prentice, C., Farquhar, G., Fasham, M., Goulden, M., Heimann, M., Jaramillo, V., Kheshgi, H., Quéré, C. L., Scholes, R. and Wallace, D.: 2001, ‘The carbon cycle and atmospheric CO2’, in J.T. Houghton et al. (eds.), Climate Change 2001: The Scientific Basis: Contribution of WGI to the Third Assessment Report of the IPCC, Cambridge University Press, New York, pp. 183–237.Google Scholar
  11. United Nations: 1992, ‘United Nations Framework Convention on Climate Change’, Int. Legal Mat. 31, 849–873.Google Scholar
  12. Wigley, T.M.L., Richels, R. and Edmonds, J.A.: 1996, ‘Economic and environmental choices in the stabilization of CO2 concentrations: choosing the “right” emissions pathway’, Nature 379, 240–243.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Haroon S. Kheshgi
    • 1
  • Steven J. Smith
    • 1
  • James A. Edmonds
    • 1
  1. 1.ExxonMobil Research and Engineering CompanyAnnandaleUSA

Personalised recommendations