Advertisement

Minerva

, Volume 46, Issue 2, pp 215–229 | Cite as

The Early History of David Bohm’s Quantum Mechanics Through the Perspective of Ludwik Fleck’s Thought-Collectives

  • Christian ForstnerEmail author
Article

Abstract

This paper analyses the early history of David Bohm’s mechanics from the perspective of Ludwik Fleck’s thought-collectives and shows how the thought-style of the scientific community limits the possible modes of thinking and what new possibilities for the construction of a new theory arise if these limits are removed.

Keywords

David Bohm  Quantum mechanics  Cold War  History of physics 20th century 

Notes

Acknowledgements

Thanks are due to the Hans-Böckler-Stiftung and the Max-Planck-Institute for the History of Science for supporting this study. For many helpful suggestions and discussions I thank the Minerva referees, Carsten Reinhardt, Christoph Meinel, Skùli Sigurdsson, Christoph Lehner, and Erik Banks.

References

  1. Beller, Mara. 1999. Quantum dialogue: The making of a revolution. Chicago: Chicago University Press.Google Scholar
  2. Bohm, David. 1949. Note on a theorem of Bloch concerning possible causes of superconductivity. Physical Review 75: 502–504.CrossRefGoogle Scholar
  3. Bohm, David. 1951. Quantum theory. New York: Prentice Hall.Google Scholar
  4. Bohm, David. 1952a. A suggested interpretation of quantum theory in terms of ‘hidden variables’. Part I. Physical Review 85: 166–179.CrossRefGoogle Scholar
  5. Bohm, David. 1952b. A suggested interpretation of quantum theory in terms of ‘hidden variables’. Part II. Physical Review 85: 180–193.CrossRefGoogle Scholar
  6. Bohm, David. 1984 [1957]. Causality and chance in modern physics. London: Routledge & Kegan Paul. First published in 1957.Google Scholar
  7. Bohm, David, and Jean-Pierre Vigier. 1954. Model of the causal interpretation of quantum theory in terms of a fluid with irregular fluctuations. Physical Review 46: 208–216.CrossRefGoogle Scholar
  8. Bohm, David, and M. Weinstein. 1948. The self-oscillations of a charged particle. Physical Review 74: 1789–1798.CrossRefGoogle Scholar
  9. Bohm, David, and Walter Schützer. 1955. The general statistical problem in physics and the theory of probability. Supplemento al Nuovo Cimento 2: 1004–1047.CrossRefGoogle Scholar
  10. Bohm, David, Ralph Schiller, and Jayme Tiomno. 1957. On the causal interpretation of the Pauli equation (A). Nuovo Cimento 1: 48–66.Google Scholar
  11. Bohr, Niels. 1928. Das Quantenpostulat und die neuere Entwicklung in der Atomistik. Die Naturwissenschaften 16: 245–257.CrossRefGoogle Scholar
  12. Cartwright, Nancy. 1987. Philosophical problems of quantum theory: The response of American physicists. In The probalistic revolution: Ideas in the sciences, ed. Lorenz Krüger, Gerd Gigenzer, and Mary S. Morgan, 417–435. Cambridge MA: MIT Press.Google Scholar
  13. Cohen, Robert S., and Thomas Schnelle, ed. 1986. Cognition and fact. Materials on Ludwik Fleck. Dordrecht: Reidel.Google Scholar
  14. Cushing, James T. 1994. Quantum mechanics: Historical contingency and the Copenhagen hegemony. Chicago: Chicago University Press.Google Scholar
  15. Engels, Friedrich. 1965. Dialektik der Natur. In Marx Engels Werke, Vol. 20. Berlin: Dietz Verlag.Google Scholar
  16. Feyerabend, Paul. 1997. Zeitverschwendung. Frankfurt am Main: Suhrkamp.Google Scholar
  17. Fine, Arthur. 1986. The Shaky game: Einstein, realism and the quantum theory. Chicago: University of Chicago Press.Google Scholar
  18. Fleck, Ludwik. 1979. Genesis and development of a scientific fact. First English translation of the first German edition (1935). Chicago: Chicago University Press.Google Scholar
  19. Fleck, Ludwik. 1980. Entstehung einer wissenschaftlichen Tatsache. Einführung in die Lehre von Denkstil und Denkkollektiv. Frankfurt am Main: Suhrkamp.Google Scholar
  20. Forstner, Christian. 2007. Quantenmechanik im Kalten Krieg. David Bohm und Richard Feynman. Diepholz: GNT-Verlag.Google Scholar
  21. Freire, Olival Jr. 1997. Quantum controversy and Marxism. Historia Scientarium: International Journal of the History of Science Society of Japan 7: 137–152.Google Scholar
  22. Freire, Olival Jr. 2005. Science and exile: David Bohm, the cold war, and a new interpretation of quantum mechanics. Historical Studies in the Physical and Biological Sciences 36: 1–3.CrossRefGoogle Scholar
  23. Gell-Mann, Murray. 1995. The quark and the Jaguar: Adventures in the simple and the complex. London: Abacus.Google Scholar
  24. Goodchild, Peter, and J. Robert Oppenheimer. 1985. Shatterer of worlds. New York: Fromm.Google Scholar
  25. Gutherie, Andrew, and Raymond K. Wakerling, ed. 1949. The characteristics of electrical discharges in magnetic fields. New York: McGraw-Hill.Google Scholar
  26. Heilbron, John L., and Robert W. Seidel. 1989. Lawrence and his laboratory: A history of the Lawrence Berkeley laboratory. Berkeley: University of California Press.Google Scholar
  27. Herken, Gregg. 2003. Brotherhood of the bomb: The Tangeled lives and loyalities of Robert Oppenheimer, Ernest Lawrence, and Edward Teller. New York: Owl Books.Google Scholar
  28. Holton, Gerald. 1981. Thematische Analyse der Wissenschaft. Frankfurt am Main: Suhrkamp.Google Scholar
  29. Jammer, Max. 1974. The philosophy of quantum mechanics: The interpretations of quantum mechanics in historical perspective. New York: Wiley.Google Scholar
  30. Kemble, Edwin C. 1937. The fundamental principles of quantum mechanics with elementary applications. New York: McGraw-Hill.Google Scholar
  31. Kojevnikov, Alexei. 2002. David Bohm and collective movement. Historical Studies in the Physical and Biological Sciences 33: 161–192.CrossRefGoogle Scholar
  32. Kuhn, Thomas S. 1962. The structure of scientific revolutions. Chicago: Chicago University Press.Google Scholar
  33. Lenin, Wladimir I. 1962. Materialismus und Empiriokritizismus. In Lenin Werke, Band 14. Berlin: Dietz Verlag.Google Scholar
  34. Olwell, Russel. 1999. Physical isolation and marginalization in physics. David Bohm’s cold war exile. Isis 40: 738–758.CrossRefGoogle Scholar
  35. Pauli, Wolfgang. 1996. In Wissenschaftlicher Briefwechsel mit Bohr, Einstein Heisenberg et al., ed. Karl von Meyenn. Vol. IV, Part I. Berlin: Springer.Google Scholar
  36. Pauling, Linus, and E. Bright Wilson. 1935. Introduction to quantum mechanics: With applications to chemistry. New York: McGraw-Hill.Google Scholar
  37. Peat, F. David. 1997. Inifinite potential: The life and times of David Bohm. Reading, MA: Addison-Wesley.Google Scholar
  38. Ruark, Arthur E., and Harold C. Urey. 1930. Atoms, molecules and quanta. New York: McGraw-Hill.Google Scholar
  39. Schrecker, Ellen W. 1986. No Ivory tower: McCartyism and the Universities. New York and Oxford: Oxford University Press.Google Scholar
  40. Schweber, Silvan S. 1986: The empiricists temper regnant: Theoretical physics in the United States 1920–1950. Historical Studies in the Physical and Biological Sciences 17: 55–98.Google Scholar
  41. Schweber, Silvan S. 1994. QED and the Man who Made it: Dyson, Feynman, Schwinger, and Tomonaga. Princeton: Princeton University Press.Google Scholar
  42. Sharpe, Kevin J. 1993. David Bohm’s World: New physics and new religion. Cranbury, NJ: Bucknell University Press.Google Scholar
  43. Tse-Tung, Mao. 1968. Über den Widerspruch. In Ausgewählte Werke, Band 1. Peking: Verlag für Fremdsprachige Literatur.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Institut für Geschichte der Medizin, Naturwissenschaft und TechnikFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations