Advertisement

Minds and Machines

, Volume 28, Issue 4, pp 709–733 | Cite as

What an Entangled Web We Weave: An Information-centric Approach to Time-evolving Socio-technical Systems

  • Markus Luczak-Roesch
  • Kieron O’Hara
  • Jesse David Dinneen
  • Ramine Tinati
Article

Abstract

A new layer of complexity, constituted of networks of information token recurrence, has been identified in socio-technical systems such as the Wikipedia online community and the Zooniverse citizen science platform. The identification of this complexity reveals that our current understanding of the actual structure of those systems, and consequently the structure of the entire World Wide Web, is incomplete, which raises novel questions for data science research but also from the perspective of social epistemology. Here we establish the principled foundations and practical advantages of analyzing information diffusion within and across Web systems with Transcendental Information Cascades, and outline resulting directions for future study in the area of socio-technical systems. We also suggest that Transcendental Information Cascades may be applicable to any kind of time-evolving system that can be observed using digital technologies, and that the structures found in such systems comprise properties common to all naturally occurring complex systems.

Keywords

Information Philosophy Temporal data mining Bursts Information dynamics Socio-technical systems Information theory Information cascades Complexity science Network science Epistemology Knowledge Truth Time 

Notes

Acknowledgements

This article underwent an extensive open peer-review process, because the initial version was published as a pre-print on PeerJ (https://doi.org/10.7287/peerj.preprints.2789). The authors want thank all people who took the time to provide critical comments and feedback about this version or who engaged in discussions when the argument was presented at scientific events. Our work was partially supported under SOCIAM: The Theory and Practice of Social Machines, funded by the UK EPSRC under Grant EP/J017728/2 and the Victoria University of Wellington Research Establishment Grant 8-1620-213486-3744.

References

  1. Adamic, L. A., & Huberman, B. A. (2000). Power-law distribution of the world wide web. Science, 287(5461), 2115–2115.CrossRefGoogle Scholar
  2. Alvesson, M., & Sandberg, J. (2014). Habitat and habitus: Boxed-in versus box-breaking research. Organization Studies, 35(7), 967–987.CrossRefGoogle Scholar
  3. Anick, D., Mitra, D., & Sondhi, M. M. (1982). Stochastic theory of a data-handling system with multiple sources. Bell Labs Technical Journal, 61(8), 1871–1894.MathSciNetCrossRefGoogle Scholar
  4. Bailey, K. D. (1990). Social entropy theory. Albany: SUNY Press.Google Scholar
  5. Bailey, K. D. (2006). Living systems theory and social entropy theory. Systems Research and Behavioral Science, 23(3), 291–300.CrossRefGoogle Scholar
  6. Barabasi, A.-L. (2005). The origin of bursts and heavy tails in human dynamics. arXiv:cond-mat/0505371.
  7. Barabási, A.-L., Albert, R., & Jeong, H. (2000). Scale-free characteristics of random networks: The topology of the world-wide web. Physica A: Statistical Mechanics and its Applications, 281(1–4), 69–77.CrossRefGoogle Scholar
  8. Benbasat, I., Goldstein, D. K., & Mead, M. (1987). The case research strategy in studies of information systems. MIS Quarterly, 11, 369–386.CrossRefGoogle Scholar
  9. Berners-Lee, T., Fischetti, M., & Dertouzos, M. L. (2000). Weaving the web: The original design and ultimate destiny of the World Wide Web by its inventor. New York: HarperInformation.Google Scholar
  10. Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems, 30(1–7), 107–117.CrossRefGoogle Scholar
  11. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., et al. (2000). Graph structure in the web. Computer Networks, 33(1), 309–320.CrossRefGoogle Scholar
  12. Cebrian, M., Rahwan, I., & Pentland, A. S. (2016). Beyond viral. Communications of the ACM, 59(4), 36–39.CrossRefGoogle Scholar
  13. Cheng, J., Adamic, L., Dow, P. A., Kleinberg, J. M., & Leskovec, J. (2014). Can cascades be predicted? In Proceedings of the 23rd international conference on World wide web (pp. 925–936). ACM.Google Scholar
  14. Dinneen, J. D. & Brauner, C. (2017). Information-not-thing: further problems with and alternatives to the belief that information is physical. In CAIS-ACSI ‘17: Proceedings of the 2017 Canadian Association for Information Science.Google Scholar
  15. Dinneen, J. D., & Brauner, C. (2015). Practical and philosophical considerations for defining information as well-formed, meaningful data in the information sciences. Library Trends, 63(3), 378–400.CrossRefGoogle Scholar
  16. Donner, R. V., Small, M., Donges, J. F., Marwan, N., Zou, Y., Xiang, R., et al. (2011). Recurrence-based time series analysis by means of complex network methods. International Journal of Bifurcation and Chaos, 21(04), 1019–1046.MathSciNetCrossRefGoogle Scholar
  17. Eckmann, J.-P., Kamphorst, S. O., & Ruelle, D. (1987). Recurrence plots of dynamical systems. EPL (Europhysics Letters), 4(9), 973.CrossRefGoogle Scholar
  18. Eisenhardt, K. M. (1989). Building theories from case study research. Academy of Management Review, 14(4), 532–550.CrossRefGoogle Scholar
  19. Feld, S. L. (1991). Why your friends have more friends than you do. American Journal of Sociology, 96(6), 1464–1477.CrossRefGoogle Scholar
  20. Floridi, L. (2015). Semantic conceptions of information. Stanford: The Metaphysics Research Lab, Stanford University.zbMATHGoogle Scholar
  21. Grudin, J. (1994). Computer-supported cooperative work: History and focus. Computer, 27(5), 19–26.CrossRefGoogle Scholar
  22. Hendler, J., & Berners-Lee, T. (2010). From the semantic web to social machines: A research challenge for ai on the world wide web. Artificial Intelligence, 174(2), 156–161.MathSciNetCrossRefGoogle Scholar
  23. Hohenberg, P. C., & Halperin, B. I. (1977). Theory of dynamic critical phenomena. Reviews of Modern Physics, 49(3), 435.CrossRefGoogle Scholar
  24. Holme, P., & Saramäki, J. (2012). Temporal networks. Physics Reports, 519(3), 97–125.CrossRefGoogle Scholar
  25. Honari, A. (2015). Online social research in Iran: A need to offer a bigger picture. CyberOrient: The Online Journal of Virtual Middle East, 9(2).Google Scholar
  26. Jung, C. G. (2010). Synchronicity: An acausal connecting principle. (From Vol. 8. of the collected works of CG Jung) (New in Paper). Princeton: Princeton University Press.Google Scholar
  27. Kant, I. (1934). Critique of pure reason. (Trans: Smith, N. K.). London: Macmillan.Google Scholar
  28. Keegan, B. C., Lev, S., & Arazy, O. (2016). Analyzing organizational routines in online knowledge collaborations: A case for sequence analysis in CSCW. In Proceedings of the 19th ACM conference on computer-supported cooperative work & social computing (pp. 1065–1079). ACM.Google Scholar
  29. Kleinberg, J. (2003). Bursty and hierarchical structure in streams. Data Mining and Knowledge Discovery, 7(4), 373–397.MathSciNetCrossRefGoogle Scholar
  30. Kraut, R. E., Resnick, P., Kiesler, S., Burke, M., Chen, Y., Kittur, N., et al. (2012). Building successful online communities: Evidence-based social design. Cambridge: MIT Press.Google Scholar
  31. Kullback, S. (1997). Information theory and statistics. Chelmsford: Courier Corporation.zbMATHGoogle Scholar
  32. Lee, C. P. & Paine, D. (2015). From the matrix to a model of coordinated action (moca): A conceptual framework of and for CSCW. In Proceedings of the 18th ACM conference on computer supported cooperative work & social computing (pp. 179–194). ACM.Google Scholar
  33. Lee, E., Karimi, F., Jo, H.-H., Strohmaier, M., & Wagner, C. (2017). Homophily explains perception biases in social networks. arXiv:1710.08601.
  34. Lee, A. S. (2010). Retrospect and prospect: Information systems research in the last and next 25 years. Journal of Information Technology, 25(4), 336–348.CrossRefGoogle Scholar
  35. Lerman, K. (2016). Information is not a virus, and other consequences of human cognitive limits. Future Internet, 8(2), 21.CrossRefGoogle Scholar
  36. Lerman, K., Yan, X., & Wu, X.-Z. (2016). The “majority illusion” in social networks. PloS ONE, 11(2), e0147617.CrossRefGoogle Scholar
  37. Luczak-Roesch, M., Tinati, R., & Shadbolt, N. (2015b). When resources collide: Towards a theory of coincidence in information spaces. In Proceedings of the 24th international conference on world wide web (pp. 1137–1142). ACM.Google Scholar
  38. Luczak-Roesch, M., Tinati, R., O’Hara, K., & Shadbolt, N. (2015a). Socio-technical computation. In Proceedings of the 18th ACM conference companion on computer supported cooperative work & social computing (pp. 139–142). ACM.Google Scholar
  39. Luczak-Roesch, M., Tinati, R., Simperl, E., Van Kleek, M., Shadbolt, N., & Simpson, R. J. (2014). Why won’t aliens talk to us? content and community dynamics in online citizen science. In ICWSM.Google Scholar
  40. Luczak-Roesch, M., Tinati, R., Van Kleek, M., & Shadbolt, N. (2015c). From coincidence to purposeful flow? properties of transcendental information cascades. In Proceedings of the 2015 IEEE/ACM international conference on advances in social networks analysis and mining 2015 (pp. 633–638). ACM.Google Scholar
  41. Malone, T. W., Laubacher, R., & Dellarocas, C. (2009). Harnessing crowds: Mapping the genome of collective intelligence. Technical Report No. 4732-09, MIT Sloan Research Paper.Google Scholar
  42. McKinney, E. H, Jr., & Yoos, C. J. (2010). Information about information: A taxonomy of views. MIS Quarterly, 34, 329–344.CrossRefGoogle Scholar
  43. McLuhan, M., & Fiore, Q. (1967). The medium is the message. New York, 123, 126–128.Google Scholar
  44. Ovchinnikov, I. V. (2016). Introduction to supersymmetric theory of stochastics. Entropy, 18(4), 108.CrossRefGoogle Scholar
  45. Parameswaran, M., & Whinston, A. B. (2007). Research issues in social computing. Journal of the Association for Information Systems, 8(6), 336.CrossRefGoogle Scholar
  46. Parisi, G., & Sourlas, N. (1982). Supersymmetric field theories and stochastic differential equations. Nuclear Physics B, 206(2), 321–332.MathSciNetCrossRefGoogle Scholar
  47. Pettit, P. (2006). When to defer to majority testimony-and when not. Analysis, 66(291), 179–187.CrossRefGoogle Scholar
  48. Pettit, P. (2010). Groups with minds of their own. In A. I. Goldman & D. Whitcomb (Eds.), Social epistemology: Essential readings (p. 242). Oxford: Oxford University Press.Google Scholar
  49. Popper, K. (1972). Objective knowledge: An evolutionary approach. Oxford University Press.Google Scholar
  50. Popper, K. (2013). Knowledge and the body-mind problem: In defence of interaction. London: Routledge.Google Scholar
  51. Potthast, M., Stein, B., & Gerling, R. (2008). Automatic vandalism detection in wikipedia. In European conference on information retrieval (pp. 663–668). Springer.Google Scholar
  52. Quinn, A. J. & Bederson, B. B. (2011). Human computation: A survey and taxonomy of a growing field. In Proceedings of the SIGCHI conference on human factors in computing systems (pp. 1403–1412). ACM.Google Scholar
  53. Rabiner, L. R. (1989). A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257–286.CrossRefGoogle Scholar
  54. Shahaf, D., Yang, J., Suen, C., Jacobs, J., Wang, H., & Leskovec, J. (2013). Information cartography: Creating zoomable, large-scale maps of information. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 1097–1105). ACM.Google Scholar
  55. Shannon, C. E. (1949). Communication theory of secrecy systems. Bell Labs Technical Journal, 28(4), 656–715.MathSciNetCrossRefGoogle Scholar
  56. Smart, P. R. (2018). Mandevillian intelligence. Synthese, 195(9), 4169–4200.  https://doi.org/10.1007/s11229-017-1414-z.CrossRefGoogle Scholar
  57. Smart, P., Simperl, E., & Shadbolt, N. (2014). A taxonomic framework for social machines. In D. Miorandi, V. Maltese, M. Rovatsos, A. Nijholt, & J. Stewart (Eds.), Social collective intelligence (pp. 51–85). Cham: Springer.Google Scholar
  58. Strogatz, S. H. (2014). Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering. London: Hachette UK.zbMATHGoogle Scholar
  59. Tarski, A. (1944). The semantic conception of truth: And the foundations of semantics. Philosophy and Phenomenological Research, 4(3), 341–376.MathSciNetCrossRefGoogle Scholar
  60. Tinati, R., & Luczak-Roesch, M. (2017). Wikipedia: A complex social machine. SIGWEB Newsletter, Winter, 6.  https://doi.org/10.1145/3027141.3027147.
  61. Tinati, R., Luczak-Roesch, M., & Hall, W. (2016). Finding structure in wikipedia edit activity: An information cascade approach. In Proceedings of the 25th international conference companion on world wide web (pp. 1007–1012). International World Wide Web Conferences Steering Committee.Google Scholar
  62. Tinati, R., Luczak-Roesch, M., Shadbolt, N., & Hall, W. (2015a). Using wikiprojects to measure the health of wikipedia. In Proceedings of the 24th international conference on world wide web (pp. 369–370). ACM.Google Scholar
  63. Tinati, R., Van Kleek, M., Simperl, E., Luczak-Rösch, M., Simpson, R., & Shadbolt, N. (2015b). Designing for citizen data analysis: A cross-sectional case study of a multi-domain citizen science platform. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (pp. 4069–4078). ACM.Google Scholar
  64. Van de Sompel, H., Nelson, M., & Sanderson, R. (2013). HTTP framework for time-based access to resource states–Memento. No. RFC 7089. https://www.rfc-editor.org/info/rfc7089.
  65. Van de Sompel, H., Nelson, M. L., Sanderson, R., Balakireva, L. L., Ainsworth, S., & Shankar, H. (2009). Memento: Time travel for the web. arXiv:0911.1112.
  66. Webber Jr, C. L. & Zbilut, J. P. (2005). Recurrence quantification analysis of nonlinear dynamical systems. In Tutorials in contemporary nonlinear methods for the behavioral sciences (pp. 26–94). National Science Foundation.Google Scholar
  67. Weber, M. (1978). Economy and society: An outline of interpretive sociology (Vol. 1). Berkeley: University of California Press.Google Scholar
  68. Whitehead, A . N., & Russell, B. (1912). Principia mathematica (Vol. 2). Cambridge: University Press.zbMATHGoogle Scholar
  69. Williams, M. J., & Musolesi, M. (2016). Spatio-temporal networks: Reachability, centrality and robustness. Royal Society Open Science, 3(6), 160196.MathSciNetCrossRefGoogle Scholar
  70. Woolley, A. W., Chabris, C. F., Pentland, A., Hashmi, N., & Malone, T. W. (2010). Evidence for a collective intelligence factor in the performance of human groups. Science, 330(6004), 686–688.CrossRefGoogle Scholar
  71. Zollman, K. J. (2007). The communication structure of epistemic communities. Philosophy of Science, 74(5), 574–587.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Information ManagementVictoria University of WellingtonWellingtonNew Zealand
  2. 2.Web and Internet ScienceUniversity of SouthamptonSouthamptonUK
  3. 3.Microsoft CorpSingaporeSingapore

Personalised recommendations