Minds and Machines

, Volume 28, Issue 2, pp 287–310 | Cite as

Rethinking Causality in Biological and Neural Mechanisms: Constraints and Control

  • Jason Winning
  • William Bechtel


Existing accounts of mechanistic causation are not suited for understanding causation in biological and neural mechanisms because they do not have the resources to capture the unique causal structure of control heterarchies. In this paper, we provide a new account on which the causal powers of mechanisms are grounded by time-dependent, variable constraints. Constraints can also serve as a key bridge concept between the mechanistic approach to explanation and underappreciated work in theoretical biology that sheds light on how biological systems channel energy to actively respond to the environment in adaptive ways, perform work, and fulfill the requirements to maintain themselves far from equilibrium. We show how the framework applies to several concrete examples of control in simple organisms as well as the nervous system of complex organisms.


Mechanistic explanation Causal powers Constraints Dissipative structures Heterarchical control Biological autonomy 


  1. Ardiel, E. L., & Rankin, C. H. (2010). An elegant mind: Learning and memory in Caenorhabditis elegans. Learning & Memory, 17, 191–201.CrossRefGoogle Scholar
  2. Atkins, P. W. (1984). The second law. New York: Scientific American Books.Google Scholar
  3. Bechtel, W. (2010). The downs and ups of mechanistic research: Circadian rhythm research as an exemplar. Erkenntnis, 73, 313–328.CrossRefGoogle Scholar
  4. Bechtel, W. (2011). Mechanism and biological explanation. Philosophy of Science, 78, 533–557.CrossRefGoogle Scholar
  5. Bechtel, W. (2013). From molecules to networks: Adoption of systems aproaches in circadian rhythm research. In H. Andersen, D. Dieks, W. J. Gonzalez, T. Uebel, & G. Wheeler (Eds.), New challenges to philosophy of science (Vol. 4, pp. 211–223). Dordrecht: Springer.CrossRefGoogle Scholar
  6. Bechtel, W. (2017). Explicating top-down causation using networks and dynamics. Philosophy of Science, 84, 253–274.MathSciNetCrossRefGoogle Scholar
  7. Bechtel, W., & Abrahamsen, A. (2005). Explanation: A mechanist alternative. Studies in History and Philosophy of Biological and Biomedical Sciences, 36, 421–441.CrossRefGoogle Scholar
  8. Bechtel, W., & Abrahamsen, A. (2011). Complex biological mechanisms: Cyclic, oscillatory, and autonomous. In C. A. Hooker (Ed.), Philosophy of complex systems. Handbook of the philosophy of science (Vol. 10, pp. 257–285). New York: Elsevier.CrossRefGoogle Scholar
  9. Bechtel, W., & Richardson, R. C. (1993/2010). Discovering complexity: Decomposition and localization as strategies in scientific research. Cambridge, MA: MIT Press. 1993 edition published by Princeton University Press.Google Scholar
  10. Bich, L., & Moreno, A. (2016). The role of regulation in the origin and synthetic modelling of minimal cognition. Biosystems, 148, 12–21.CrossRefGoogle Scholar
  11. Briggman, K. L., Abarbanel, H. D. I., & Kristan, W. B. (2005). Optical imaging of neuronal populations during decision-making. Science, 307, 896–901.CrossRefGoogle Scholar
  12. Cartwright, N. (1989). Nature’s capacities and their measurement. Oxford: Clarendon.Google Scholar
  13. Cartwright, N. (2008). Reply to Stathis Psillos. In S. Hartmann, C. Hoefer, & L. Bovens (Eds.), Nancy Cartwright’s philosophy of science (pp. 195–197). New York: Routledge.Google Scholar
  14. Cartwright, N., & Pemberton, J. (2013). Aristotelian powers: Without them, what would modern science do? In R. Groff & J. Greco (Eds.), Powers and capacities in philosophy: The new Aristotelianism (pp. 93–112). New York: Routledge.Google Scholar
  15. Cohen, S. E., & Golden, S. S. (2015). Circadian rhythms in cyanobacteria. Microbiology and Molecular Biology Reviews, 79(4), 373–385.CrossRefGoogle Scholar
  16. Craver, C. F. (2007). Explaining the brain: Mechanisms and the mosaic unity of neuroscience. New York: Oxford University Press.CrossRefGoogle Scholar
  17. Craver, C. F., & Bechtel, W. (2007). Top-down causation without top-down causes. Biology and Philosophy, 22, 547–563.CrossRefGoogle Scholar
  18. Craver, C. F., & Darden, L. (2013). In search of mechanisms: Discoveries across the life sciences. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  19. Darden, L., & Craver, C. (2002). Strategies in the interfield discovery of the mechanism of protein synthesis. Studies in History and Philosophy of Biological and Biomedical Sciences, 33(1), 1–28.CrossRefGoogle Scholar
  20. Esfeld, M. (2009). The modal nature of structures in ontic structural realism. International Studies in the Philosophy of Science, 23(2), 179–194.CrossRefGoogle Scholar
  21. Glennan, S. (1996). Mechanisms and the nature of causation. Erkenntnis, 44, 50–71.CrossRefGoogle Scholar
  22. Glennan, S. (2009). Mechanisms. In H. Beebee, C. Hitchcock, & P. Menzies (Eds.), The Oxford handbook of causation (pp. 315–325). Oxford: Oxford University Press.Google Scholar
  23. Glennan, S. (2017). The new mechanical philosophy. Oxford: Oxford University Press.Google Scholar
  24. Hooker, C. A. (2013). On the import of constraints in complex dynamical systems. Foundations of Science, 18, 757–780.CrossRefGoogle Scholar
  25. Jackson, J. H. (1884). Evolution and dissolution of the nervous system (The Croonian Lectures). Lancet, 123, 555–558, 649–652, 739–744.Google Scholar
  26. Juarrero, A. (1999). Dynamics in action: Intentional behavior as a complex system. Cambridge, MA: MIT Press.Google Scholar
  27. Keijzer, F. (2015). Moving and sensing without input and output: Early nervous systems and the origins of the animal sensorimotor organization. Biology and Philosophy, 30, 311–331.CrossRefGoogle Scholar
  28. Kistler, M. (2009). Mechanisms and downward causation. Philosophical Psychology, 22(5), 595–609.MathSciNetCrossRefGoogle Scholar
  29. Kuhlmann, M., & Glennan, S. (2014). On the relation between quantum mechanical and neo-mechanistic ontologies and explanatory strategies. European Journal of Philosophy of Science, 4, 337–359.CrossRefGoogle Scholar
  30. Machamer, P. (2004). Activities and causation: The metaphysics and epistemology of mechanisms. International Studies in the Philosophy of Science, 18(1), 27–39.CrossRefGoogle Scholar
  31. Machamer, P., Darden, L., & Craver, C. F. (2000). Thinking about mechanisms. Philosophy of Science, 67, 1–25.MathSciNetCrossRefGoogle Scholar
  32. Maxwell, J. C. (1868). On governors. Proceedings of the Royal Society of London, 16, 270–283.CrossRefzbMATHGoogle Scholar
  33. Mayr, O. (1970). The origins of feedback control. Cambridge, MA: MIT Press.zbMATHGoogle Scholar
  34. McCulloch, W. S. (1945). A heterarchy of values determined by the topology of nervous nets. Bulletin of Mathematical Biophysics, 7, 89–93.CrossRefGoogle Scholar
  35. Moreno, A., & Mossio, M. (2015). Biological autonomy: A philosophical and theoretical inquiry. Dordrecht: Springer.CrossRefGoogle Scholar
  36. Nagel, E. (1961). The structure of science. New York: Harcourt, Brace.Google Scholar
  37. Nicolis, G., & Prigogine, I. R. (1977). Self-organization in nonequilibrium systems: From dissipative structures to order through fluctuations. New York: Wiley.zbMATHGoogle Scholar
  38. Nielsen, K. (2010). Representation and dynamics. Philosophical Psychology, 23, 759–773.CrossRefGoogle Scholar
  39. North, G., & Greenspan, R. J. (2007). Invertebrate neurobiology. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
  40. O’Malley, M. (2014). Philosophy of microbiology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  41. Pattee, H. H. (1970). The problem of biological hierarchy. In C. H. Waddington (Ed.), Towards a theoretical biology 3: Drafts (pp. 117–136). Edinburgh: Edinburgh University Press.Google Scholar
  42. Pattee, H. H. (1971). Physical theories of biological co-ordination. Quarterly Reviews of Biophysics, 4(2–3), 255–276.CrossRefGoogle Scholar
  43. Pattee, H. H. (1991). Measurement-control heterarchical networks in living systems. International Journal of General Systems, 18(3), 213–221.CrossRefGoogle Scholar
  44. Rosen, R. (1991). Life itself: A comprehensive inquiry into the nature, origin, and fabrication of life. New York: Columbia.Google Scholar
  45. Ross, D., Ladyman, J., & Spurrett, D. (2007). In defence of scientism. In J. Ladyman & D. Ross (Eds.), Every thing must go: Metaphysics naturalized (pp. 1–65). Oxford: Oxford University Press.Google Scholar
  46. Ruiz-Mirazo, K., & Moreno, A. (2004). Basic autonomy as a fundamental step in the synthesis of life. Artificial Life, 10, 235–259.CrossRefGoogle Scholar
  47. Ruiz-Mirazo, K., Peretó, J., & Moreno, A. (2004). A universal definition of life: Autonomy and open-ended evolution. Origins of Life and Evolution of the Biosphere, 34, 323–346.CrossRefGoogle Scholar
  48. Sklar, L. (2013). Philosophy and the foundations of dynamics. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  49. Smart, J. J. C. (1963). Philosophy and scientific realism. London: Routledge & Kegan Paul.Google Scholar
  50. Stein, P. S. G., Grillner, S., Selverston, A. I., & Stuart, D. G. (Eds.). (1997). Neurons, networks, and motor behavior. Cambridge, MA: MIT Press.Google Scholar
  51. Turvey, M. T. (1977). Preliminaries to a theory of action with reference to vision. In R. Shaw & J. Bransford (Eds.), Perceiving, acting, and knowing (pp. 211–265). Hillsdale, NJ: Erlbaum.Google Scholar
  52. van Gelder, T., & Port, R. F. (1995). It’s about time: An overview of the dynamical approach to cognition. In R. F. Port & T. van Gelder (Eds.), Mind as motion (pp. 1–43). Cambridge, MA: MIT Press.Google Scholar
  53. Varela, F. J. (1979). Principles of biological autonomy. New York: North Holland.Google Scholar
  54. Winning, J. (forthcoming). Mechanistic causation and constraints: Perspectival parts and powers, non-perspectival modal patterns.Google Scholar
  55. Woodward, J. (2003). Making things happen: A theory of causal explanation. Oxford: Oxford University Press.Google Scholar
  56. Woodward, J. (2008). Response to Strevens. Philosophy and Phenomenal Research, 77(1), 193–212.MathSciNetCrossRefGoogle Scholar
  57. Yates, F. E. (1979). Physical biology: A basis for modeling living systems. Journal of Cybernetics and Information Science, 2, 57–70.Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Philosophy and Interdisciplinary Program in Cognitive ScienceUniversity of California, San DiegoLa JollaUSA
  2. 2.Department of Philosophy, Center for Circadian Biology, and Interdisciplinary Program in Cognitive ScienceUniversity of California, San DiegoLa JollaUSA

Personalised recommendations