Minds and Machines

, Volume 28, Issue 1, pp 29–51 | Cite as

A Theory of Resonance: Towards an Ecological Cognitive Architecture

  • Vicente Raja


This paper presents a blueprint for an ecological cognitive architecture. Ecological psychology, I contend, must be complemented with a story about the role of the CNS in perception, action, and cognition. To arrive at such a story while staying true to the tenets of ecological psychology, it will be necessary to flesh out the central metaphor according to which the animal perceives its environment by ‘resonating’ to information in energy patterns: what is needed is a theory of resonance. I offer here the two main elements of such a theory: a framework (Anderson’s neural reuse) and a methodology (multi-scale fractal DST).


Cognitive architecture Embodied cognition Ecological psychology Resonance Neural computation 


  1. Aks, D. J. (2005). 1/f Dynamic in complex visual search: Evidence for self-organized criticality in human perception. In M. A. Riley & G. C. Van Orden (Eds.), Tutorials in contemporary nonlinear methods for the behavioral sciences (pp. 319–352).
  2. Anderson, M. L. (2010). Neural reuse: A fundamental organization principle of the brain. Behavioral and Brain Sciences, 33, 245–313.Google Scholar
  3. Anderson, M. L. (2014). After phrenology: Neural reuse and the interactive brain. Cambridge, MA: MIT Press.Google Scholar
  4. Bak, P. (1996). How nature work: The science of self-organized criticality. New York: Copernicus.CrossRefzbMATHGoogle Scholar
  5. Beer, R. D. (1995). A dynamical systems perspective on agent-environment Interaction. Artificial Intelligence, 72, 173–215.CrossRefGoogle Scholar
  6. Bizzarri, M., Giuliani, A., Cucina, A., D’Anselmi, F., Soto, A. M., & Sonnenschein, C. (2011). Fractal analysis in a systems biology approach to cancer. Seminars in Cancer Biology, 21, 175–182.CrossRefGoogle Scholar
  7. Calvo, P., & Gomila, T. (2008). Handbook of cognitive science: An embodied approach. San Diego, CA: Elsevier.Google Scholar
  8. Calvo, P., & Symmons, J. (2014). The architecture of cognition. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
  9. Chemero, A. (2009). Radical embodied cognitive science. Cambridge, MA: MIT Press.Google Scholar
  10. Chomsky, N. (1980). Rules and representations. Oxford, UK: Basil Blackwell.Google Scholar
  11. Clark, A. (2015). Surfing uncertainty. London, UK: Oxford University Press.Google Scholar
  12. de Rugy, A., Taga, G., Montagne, G., Buekers, M. J., & Laurent, M. (2002). Perception-action coupling model for human locomotor pointing. Biological Cybernetics, 87, 141–150.CrossRefzbMATHGoogle Scholar
  13. Dennett, D. I. (1978). Brainstorms: Philosophical essays on mind and psychology. Montgomery, VT: Bradford Books.Google Scholar
  14. Edelman, S. (2008). Computing the mind: How the mind really works. Oxford, UK: Oxford University Press.Google Scholar
  15. Eliasmith, C. (2013). How to build a brain. New York: Oxford University Press.CrossRefGoogle Scholar
  16. Favela, L. H. (2014). Radical embodied cognitive neuroscience: Addressing “Grand Challenges” of the mind sciences. Frontiers in Human Neuroscience, 8, 796.CrossRefGoogle Scholar
  17. Fink, P., Foo, P., & Warren, W. (2009). Catching fly balls in virtual reality: A critical test of the outfielder problem. Journal of Vision, 9(13), 1–8. doi: 10.1167/9.13.14 CrossRefGoogle Scholar
  18. Fodor, J. A. (1975). The language of thought. Cambridge, MA: Harvard University Press.Google Scholar
  19. Fodor, J. A. (1981). Representations: Philosophical essays on the foundations of cognitive science. Cambridge, MA: The MIT Press.Google Scholar
  20. Gallistel, C. R., & King, A. P. (2009). Memory and the computational brain: Why cognitive science will transform neuroscience. Oxford, UK: Wiley-Blackwell.CrossRefGoogle Scholar
  21. Gibson, J. J. (1966). The Senses considered as perceptual systems. Boston, MA: Houghton Miffin.Google Scholar
  22. Gibson, J. J. (1979). The ecological approach to visual perception. Boston, MA: Houghton Miffin.Google Scholar
  23. Haken, H., Kelso, J. A. S., & Bunz, H. (1985). A theoretical model of phase transitions in human hand movements. Biological Cybernetics, 51, 347–356.MathSciNetCrossRefzbMATHGoogle Scholar
  24. Hutto, D., & Myin, E. (2013). Radicalizing enactivism: Basic minds without content. Cambridge, MA: MIT Press.Google Scholar
  25. Ibáñez-Gijón, J., Buekers, M., Morice, A., Rao, G., Mascret, N., Laurin, J., et al. (2016). A scale-based approach to interdisciplinary research and expertise in sports. Journal of Sports Sciences. doi: 10.1080/02640414.2016.1164330.Google Scholar
  26. Juarrero, A. (1999). Dynamics in action: Intentional behavior as a complex system. Cambridge, MA: The MIT Press.Google Scholar
  27. Kelso, J. A. S., & Tognoli, E. (2007). Toward a complementary neuroscience: Metastable coordination dynamics of the brain. In L. I. Perlovsky & R. Kozma (Eds.), Neurodynamics of cognition and consciousness (pp. 39–59). Berlin: Springer.CrossRefGoogle Scholar
  28. Kiverstein, J., & Miller, M. (2015). The embodied brain: Towards a radical embodied cognitive neuroscience. Frontiers in Human Neuroscience, 9, 237.CrossRefGoogle Scholar
  29. Kugler, P. N., & Turvey, M. T. (1987). Information, natural law, and the self-assembly of rhythmic movement. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  30. Lamarque, C.-H., Ture Savadkooh, A., Etcheverria, E., & Dimitrijevic, Z. (2012). Multi-scale dynamics of two coupled nonsmooth systems. International Journal of Bifurcation and Chaos, 22(12), 1250295.MathSciNetCrossRefzbMATHGoogle Scholar
  31. Large, E. W. (2008). Resonating to musical rhythm: Theory and experiment. In S. Grondin (Ed.), The psychology of time. West Yorkshire: Emerald.Google Scholar
  32. Large, E. W., Kim, J. C., Flaig, N. K., Bharucha, J. J., & Krumhansl, C. L. (2016). A neurodynamic account of musical tonality. Music Perception, 33(3), 319–331.CrossRefGoogle Scholar
  33. Lee, D. N. (2009). General tau theory: Evolution to date. Special issue: Landmarks in perception. Perception, 38, 837–858.CrossRefGoogle Scholar
  34. Liebovitch, L. S., & Shehadeh, L. A. (2005). Introduction to Fractals. In M. A. Riley & G. C. Van Orden (Eds.), Tutorials in contemporary nonlinear methods for the behavioral sciences (pp. 178–266).
  35. Lombardo, T. J. (1987). The reciprocity of perceiver and environment. In The evolution of James J. Gibson’s ecological psychology. New Jersey: Lawrence Erlbaum Associates.Google Scholar
  36. Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. New York: Freeman.Google Scholar
  37. McBeath, M. K., Shaffer, D. M., & Kaiser, M. K. (1995). How baseball outfielders determine where to run to catch fly balls. Science, 268(5210), 569–573.CrossRefGoogle Scholar
  38. Merchant, H., Battaglia-Mayer, A., & Georgopoulos, A. P. (2004). Neural responses during interception of real and apparent circularly moving stimuli in motor cortex and area 7a. Cerebral Cortex, 14, 314–331.CrossRefGoogle Scholar
  39. Michaels, C., & Carello, C. (1981). Direct perception. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  40. Michaels, C., & Palatinus, Z. (2014). A ten commandments for ecological psychology. In L. Shapiro (Ed.), The Routledge handbook of embodied cognition (pp. 19–28). New York, NY: Routledge.Google Scholar
  41. Milkowski, M. (2013). Explaining the computational mind. Cambridge, MA: MIT Press.Google Scholar
  42. Moreau, A. L. D., Lorite, G. S., Rodrigues, C. M., Souza, A. A., & Cotta, A. (2009). Fractal Analysis of Xylella fastidiosa Biofilm Formation. Journal of Applied Physics. doi: 10.1063/1.13173172.Google Scholar
  43. Neisser, U. (1967). Cognitive psychology. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  44. O’Regan, J. K., & Noë, A. (2001). A sensorimotor account of vision and visual consciousness. Brain and Behavioral Sciences, 24, 939–1031.CrossRefGoogle Scholar
  45. Orekhova, E. V., Stroganova, T. A., & Posikera, I. N. (1999). Theta synchronization during sustained anticipatory attention in infants over the second half of the first year of life. International Journal of Psychophysiology, 32, 151–172.CrossRefGoogle Scholar
  46. Ouyang, F.-Y., Zheng, B., & Jiang, X.-F. (2015). Intrinsic multi-scale dynamic behaviors of complex financial systems. PLoS ONE, 10(10), e0139420.CrossRefGoogle Scholar
  47. Port, N. L., Kruse, W., Lee, D., & Georgopoulos, A. P. (2001). Motor cortical activity during interception of moving targets. Journal of Cognitive Neuroscience, 13, 306–318.CrossRefGoogle Scholar
  48. Raja, V., Biener, Z., & Chemero, A. (2017). From Kepler to Gibson. Ecological Psychology, 29(2), 146–160.CrossRefGoogle Scholar
  49. Reed, E. S. (1988). James J. Gibson and the Psychology of Perception. New Haven, CT: Yale University Press.Google Scholar
  50. Reed, E. S. (1997). Encountering the world: Toward an ecological psychology. New York, NY: Oxford University Press.CrossRefGoogle Scholar
  51. Richardson, M. J., Shockley, K., Fajen, B. R., Riley, M. A., & Turvey, M. T. (2008). Ecological psychology: Six principles for an embodied-embedded approach to behavior. In P. Calvo & T. Gomila (Eds.), Handbook of cognitive science: An embodied approach (pp. 161–188). San Diego, CA: Elsevier.Google Scholar
  52. Riley, M. A., & Van Orden, G. C. (Eds.) (2005). Tutorials in contemporary nonlinear methods for the behavioral sciences.
  53. Rumelhart, D. E., McClelland, J. L., & The PDP Research Group. (1986). Parallel distributed processing (Vol. 1 & 2). Cambridge, MA: MIT Press.Google Scholar
  54. Shaffer, D. M., Krauchunas, S. M., Eddy, M., & McBeath, M. K. (2004). How dogs navigate to catch frisbees. Psychological Science, 15(7), 437–441.CrossRefGoogle Scholar
  55. Shapiro, L. (2014). The Routledge handbook of embodied cognition. New York, NY: Routledge.Google Scholar
  56. Taga, G. (1998). A model of the neuro-musculo-skeletal system for anticipatory adjustment of human locomotion during obstacle avoidance. Biological Cybernetics, 78, 9–17.Google Scholar
  57. Todd, J. T. (1981). Visual information about moving objects. Journal of Experimental Psychology: Human Perception and Performance, 7(4), 795–810.Google Scholar
  58. Tognoli, E., & Kelso, J. A. S. (2014). The metastable brain. Neuron, 81, 35–48.CrossRefGoogle Scholar
  59. Tuller, B., Fitch, H. L., & Turvey, M. T. (1982). The Bernstein perspective: II. The concept of muscle linkage or coordinative structure. In J. A. S. Kelso (Ed.), Understanding human motor control. Champaign, IL: Human Kinetics.Google Scholar
  60. Turvey, M. T. (1992). Ecological foundations of cognition: Invariants of perception and action. In H. L. Herbert, P. W. van der Broek, & D. C. Knill (Eds.), Cognition: conceptual and methodological issues (pp. 85–117). Washington, DC, US: American Psychological Association.CrossRefGoogle Scholar
  61. Turvey, M. T., Fitch, H. L., & Tuller, B. (1982). The Bernstein perspective: I. The problems of degrees of freedom and context-conditioned variability. In J. A. S. Kelso (Ed.), Understanding human motor control. Champaign, IL: Human Kinetics.Google Scholar
  62. Turvey, M. T., Shaw, R., Reed, E. S., & Mace, W. (1981). Ecological laws for perceiving and acting: A reply to Fodor and Pylyshyn. Cognition, 10, 237–304.CrossRefGoogle Scholar
  63. van der Weel, F. R., & van der Meer, A. L. H. (2009). Seeing it coming: Infants’ brain responses to looming danger. Naturwissenschaften, 96, 1385–1391.CrossRefGoogle Scholar
  64. Van Orden, G. C., Holden, J. G., & Turvey, M. T. (2003). Self-organization of cognitive performance. Journal of Experimental Psychology: General, 132(3), 331–350.CrossRefGoogle Scholar
  65. Van Orden, G. C., Hollis, G., & Wallot, S. (2012). The blue-collar brain. Frontiers in Psychology, 3, 207.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of CincinnatiCincinnatiUSA

Personalised recommendations