Minds and Machines

, Volume 27, Issue 1, pp 233–252 | Cite as

Formalizing Cognitive Acceptance of Arguments: Durum Wheat Selection Interdisciplinary Study

  • Pierre Bisquert
  • Madalina Croitoru
  • Florence Dupin de Saint-CyrEmail author
  • Abdelraouf Hecham


In this paper we present an interdisciplinary approach that concerns the problem of argument acceptance in an agronomy setting. We propose a computational cognitive model for argument acceptance based on the dual model system in cognitive psychology. We apply it in an agronomy setting within a French national project on durum wheat.


Cognitive model Argument evaluation Substantive irrationality 



We would like to express our uppermost gratitude to Gabriele Kern-Isberner and the anonymous reviewers for their extremely helpful comments and remarks. We would like to thank as well Patrice Buche for his help regarding the French ANR DURDUR project.


  1. Amgoud, L., Maudet, N., & Parsons, S. (2002). An argumentation-based semantics for agent communication languages. In Proceedings of ECAI 2002.Google Scholar
  2. Arioua, A., & Croitoru, M. (2015). Formalizing explanatory dialogues. In SUM’2015: 9th International Conference on scalable uncertainty management, Quebec, Canada.Google Scholar
  3. Arioua, A., & Croitoru, M. (2016). Dialectical characterization of consistent query explanation with existential rules. Proceedings of FLAIRS, 2016, 621–625.Google Scholar
  4. Arioua, A., & Croitoru, M. (2016). A dialectical proof theory for universal acceptance in coherent logic-based argumentation frameworks. In Proceedings of ECAI 2016, (page to appear).Google Scholar
  5. Beevers, C. G. (2005). Cognitive vulnerability to depression: A dual process model. Clinical Psychology Review, 25(7), 975–1002.CrossRefGoogle Scholar
  6. Besnard, P., & Hunter, A. (2001). A logic-based theory of deductive arguments. Artificial Intelligence, 128, 203–235.MathSciNetCrossRefzbMATHGoogle Scholar
  7. Bisquert, P., Croitoru, M., & De Saint Cyr, F. D. (2015). Towards a dual process cognitive model for argument evaluation (regular paper). In C. Beierle & A. Dekhtyar (Eds), International Conference on Scalable Uncertainty Management (SUM), Quebec, 16/09/2015-18/09/2015, LNAI, (pp. 298–313). Springer
  8. Bisquert, P., Croitoru, M., & De Saint Cyr Bannay, F. D. (2015). Towards a dual process cognitive model for argument evaluation. In: SUM: Scalable Uncertainty Management, volume LNCS of Scalable Uncertainty Management (pp. 298–313). Quebec City, Canada.Google Scholar
  9. Bisquert, P., Croitoru, M., de Saint-Cyr, F. D., & Hecham, A. (2016). Substantive irrationality in cognitive systems. In Proceedings of ECAI 2016, (page to appear).Google Scholar
  10. Cacioppo, J. T., & Petty, R. E. (1984). The elaboration likelihood model of persuasion. Advances in Consumer Research, 11(1), 673–675.Google Scholar
  11. Calì, A., Gottlob, G., & Lukasiewicz, T. (2012). A general datalog-based framework for tractable query answering over ontologies. Web Semantics: Science, Services and Agents on the World Wide Web, 14, 57–83.CrossRefGoogle Scholar
  12. Chein, M., Mugnier, M.-L., & Croitoru, M. (2013). Visual reasoning with graph-based mechanisms: The good, the better and the best. Knowledge Engineering Review, 28(Special Issue 3), 249–271.CrossRefGoogle Scholar
  13. Croitoru, M., Arioua, A., Buche, P., & Thomopoulos, R. (2015). Using explanation dialogue for durum wheat knowledge base acquisition. Technical report, UMR IATE, LIRMM, GraphIK, University of Montpellier.Google Scholar
  14. Croskerry, P., Singhal, G., & Mamede, S. (2013). Cognitive debiasing 1: Origins of bias and theory of debiasing. BMJ Quality & Safety, 22(Suppl 2), 58–64.CrossRefGoogle Scholar
  15. Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence, 77, 321–357.MathSciNetCrossRefzbMATHGoogle Scholar
  16. Dvorák, W., Pichler, R., & Woltran, S. (2010). Towards fixed-parameter tractable algorithms for argumentation. In: KR, (pp. 112–122).Google Scholar
  17. Epstein, S. (1994). Integration of the cognitive and the psychodynamic unconscious. American Psychologist, 49(8), 709.CrossRefGoogle Scholar
  18. Evans, J. S. B. T., & Curtis-Holmes, J. (2005). Rapid responding increases belief bias: Evidence for the dual-process theory of reasoning. Thinking & Reasoning, 11(4), 382–389.CrossRefGoogle Scholar
  19. Evans, J. S. B. T., & Frankish, K. E. (2009). In two minds: Dual processes and beyond. Oxford: Oxford University Press.CrossRefGoogle Scholar
  20. Freeman, J. B. (2004). Acceptable premises: An epistemic approach to an informal logic problem. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  21. Good, I. J. (1971). The probabilistic explication of information, evidence, surprise, causality, explanation, and utility. In V.P. Godambe and D.A. Sprott (Eds.), Foundations of Statistical Inference: Proc. Symp. on the Foundations of Statistical Inference (pp. 108–141). Toronto: Holt, Rinehart, and Winston.Google Scholar
  22. Hecham, A., Croitoru, M., Bisquert, P., & Buche, P. (2016). Extending gwaps for building profile aware associative networks. In: Proceedings of ICCS 2016, (pp. 43–58).Google Scholar
  23. Kahneman, D. (2003). A perspective on judgment and choice: Mapping bounded rationality. American Psychologist, 58(9), 697–720.CrossRefGoogle Scholar
  24. Kraus, S., Sycara, K., & Evanchik, A. (1998). Argumentation in negotiation: A formal model and implementation. Artificial Intelligence, 104(1–2), 1–69.MathSciNetCrossRefGoogle Scholar
  25. Quillan, M. R. (1966). Semantic memory. Technical report, DTIC Document.Google Scholar
  26. Simon, H. A. (1955). A behavioral model of rational choice. The Quarterly Journal of Economics, 69, 99–118.CrossRefGoogle Scholar
  27. Simon, H. A. (1976). From substantive to procedural rationality. In T. J. Kastelein, S. K. Kuipers, W. A. Nijenhuis & G. R. Wagenaar (Eds.), 25 years of economic theory (pp. 65–86). Springer.  Google Scholar
  28. Sloman, S. A. (1996). The empirical case for two systems of reasoning. Psychological Bulletin, 119(1), 3.CrossRefGoogle Scholar
  29. Stanovich, K. E., Toplak, M. E., & West, R. F. (2008). The development of rational thought: A taxonomy of heuristics and biases. Advances in Child Development and Behavior, 36, 251–285.CrossRefGoogle Scholar
  30. Terwilliger, J. D., & Ott, J. (1994). Handbook of human genetic linkage. Baltimore: JHU Press.Google Scholar
  31. Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185(4157), 1124–1131.CrossRefGoogle Scholar
  32. Vannella, D., Jurgens, D., Scarfini, D., Toscani, D., & Navigli, Roberto. (2014). Validating and extending semantic knowledge bases using video games with a purpose. ACL, 1, 1294–1304.Google Scholar
  33. Von Ahn, L. (2006). Games with a purpose. Computer, 39(6), 92–94.CrossRefGoogle Scholar
  34. Walton, D., Reed, C., & Macagno, F. (2008). Argumentation Schemes. Cambridge: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  35. Wilson, J. R., & Sharples, S. (2015). Evaluation of human work. Boca Raton: CRC Press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.GraphIK, LIRMM, Univ. MontpellierMontpellierFrance
  2. 2.GraphIK, INRAMontpellierFrance
  3. 3.IRIT, Univ. Paul SabatierToulouseFrance

Personalised recommendations