Advertisement

Minds and Machines

, Volume 26, Issue 4, pp 359–388 | Cite as

How to Make a Meaningful Comparison of Models: The Church–Turing Thesis Over the Reals

  • Maël Pégny
Article
  • 336 Downloads

Abstract

It is commonly believed that there is no equivalent of the Church–Turing thesis for computation over the reals. In particular, computational models on this domain do not exhibit the convergence of formalisms that supports this thesis in the case of integer computation. In the light of recent philosophical developments on the different meanings of the Church–Turing thesis, and recent technical results on analog computation, I will show that this current belief confounds two distinct issues, namely the extension of the notion of effective computation to the reals on the one hand, and the simulation of analog computers by Turing machines on the other hand. I will argue that it is possible in both cases to defend an equivalent of the Church–Turing thesis over the reals. Along the way, we will learn some methodological caveats on the comparison of different computational models, and how to make it meaningful.

Keywords

Church–Turing thesis Type 2 theory of effectivity Analog computation Recursive analysis B.S.S. model \({\mathbb {R}}\)-recursive functions G.P.A.C. 

Notes

Acknowledgements

I wish to thank first and foremost Olivier Bournez, for many fruitful discussions. My former advisors J.B. Joinet and A. Grinbaum were also instrumental in the making of that paper.

References

  1. Aaronson, S. (2005, March). NP-complete problems and physical reality. SIGACT news. arXiv:quant-ph/0502072.
  2. Asarin, E., & Bouajjani, A. (2001). Perturbed turing machines and hybrid systems. In IEEE (Ed.), Logic in computer science, 2001. Proceedings of 16th annual IEEE symposium, pp. 269–278.Google Scholar
  3. Blum, L., Shub, M., & Smale, S. (2000). On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. The Collected Papers of Stephen Smale, 3, 1293.CrossRefMATHGoogle Scholar
  4. Bournez, O., Campagnolo, M. L., Graça, D. S., & Hainry, E. (2006). The general purpose analog computer and computable analysis are two equivalent paradigms of analog computation. In Theory and applications of models of computation, pp. 631–643. Springer.Google Scholar
  5. Bournez, O., Graça, D. S., & Hainry, E. (2013a). Computation with perturbed dynamical systems. Journal of Computer and System Sciences, 79, 714–724.MathSciNetCrossRefMATHGoogle Scholar
  6. Bournez, O., Graça, D. S., & Pouly, A. (2013b, May). Turing machines can be efficiently simulated by the general purpose analog computer. In Proceedings TAMC 2013, pp. 169–180, Hong Kong, China. Springer.Google Scholar
  7. Brattka, V., Hertling, P., & Weihrauch, K. (2008). A tutorial on computable analysis. In New computational paradigms, pp. 425–491. Springer.Google Scholar
  8. Button, T. (2009). SAD computers and two versions of the Church–Turing thesis. The British Journal for the Philosophy of Science, 60(4), 765–792.MathSciNetCrossRefMATHGoogle Scholar
  9. Church, A. (1936). An unsolvable problem of elementary number theory. American Journal of Mathematics, 58(2), 345–363.MathSciNetCrossRefMATHGoogle Scholar
  10. Church, A. (1937). Review: AM Turing, on computable numbers, with an application to the Entscheidungsproblem. Journal of Symbolic Logic, 2(1), 42–43.Google Scholar
  11. Copeland, J. (2002a). Accelerating turing machines. Minds and Machines, 12(2), 281–300.MathSciNetCrossRefMATHGoogle Scholar
  12. Copeland, J. (2002b). Hypercomputation. Minds and Machines, 12(4), 461–502.CrossRefMATHGoogle Scholar
  13. Costa, J. F., & Graça, D. (2003). Analog computers and recursive functions over the reals. Journal of Complexity, 19(5), 644–664.MathSciNetCrossRefMATHGoogle Scholar
  14. Cotogno, P. (2003). Hypercomputation and the physical Church–Turing thesis. The British Journal for the Philosophy of Science, 54(2), 181–223.MathSciNetCrossRefMATHGoogle Scholar
  15. Davis, M. (Ed.). (1965). The undecidable. New York: Raven Press Books.Google Scholar
  16. Davis, M. (1982). Why Gödel didn’t have Church’s thesis. Information and Control, 54(1/2), 3–24.MathSciNetCrossRefMATHGoogle Scholar
  17. Deutsch, D. (1985). Quantum theory, the Church–Turing principle and the universal quantum computer. Proceedings of the Royal Society of London A: Mathematical and Physical Sciences, 400(1818), 97–117.MathSciNetCrossRefMATHGoogle Scholar
  18. Earman, J. (1986). A primer on determinism (Vol. 32). Berlin: Springer.CrossRefGoogle Scholar
  19. Fortnow, L. (2012). The enduring legacy of the turing machine. The Computer Journal, 55(7), 830–831.CrossRefGoogle Scholar
  20. Gandy, R. (1980). Church’s thesis and principles for mechanisms. Studies in Logic and the Foundations of Mathematics, 101, 123–148.MathSciNetCrossRefMATHGoogle Scholar
  21. Geroch, R., & Hartle, J. B. (1986). Computability and physical theories. Foundations of Physics, 16(6), 533–550.MathSciNetCrossRefGoogle Scholar
  22. Gherardi, G. (2011). Alan turing and the foundations of computable analysis. Bulletin of Symbolic Logic, 17(3), 394–430.MathSciNetCrossRefMATHGoogle Scholar
  23. Goldin, D., & Wegner, P. (2008). The interactive nature of computing: Refuting the strong Church–Turing thesis. Minds and Machines, 18(1), 17–38.CrossRefGoogle Scholar
  24. Graça, D. (2004). Some recent developments on Shannon’s general purpose analog computer. Mathematical Logic Quaterly, 50(4–5), 473–485.CrossRefMATHGoogle Scholar
  25. Knuth, D. E. (1997). Art of computer programming, volume 1: Fundamental algorithms (3rd ed.). Boston: Addison-Wesley Professional.MATHGoogle Scholar
  26. Ko, K. I. (1991). Complexity theory of real functions. Boston: Birkhauser Boston Inc.CrossRefMATHGoogle Scholar
  27. Marguin, J. (1994). Histoire des instruments et machines à calculer : trois siècles de mécanique pensante, 1642–1942. Hermann.Google Scholar
  28. Moore, C. (1996). Recursion theory on the reals and continuous-time computation. Theoretical Computer Science, 162(1), 23–44.MathSciNetCrossRefMATHGoogle Scholar
  29. Bournez, O., & Campagnolo, M. (2008). New computational paradigms, chapter A survey on continuous time computation, pp. 383–423. Springer.Google Scholar
  30. Pégny, M. (2013). Sur les limites empiriques du calcul. Calculabilité, complexité et physique. Philosophie, Université de Paris 1.Google Scholar
  31. Piccinini, G. (2011). The physical Church–Turing thesis: Modest or bold? The British Journal for the Philosophy of Science, 62(4), 733–769.MathSciNetCrossRefMATHGoogle Scholar
  32. Pitowsky, I. (1990). The physical Church thesis and physical computational complexity. Iyyun, 39, 81–99.Google Scholar
  33. Post, E. L. (1936). Finite combinatory processes-formulation 1. The Journal of Symbolic Logic, 1(3), 103–105.CrossRefMATHGoogle Scholar
  34. Pour-El, M. B., & Ian Richards, J. (1989). Computability in analysis and physics. Berlin: Springer.CrossRefMATHGoogle Scholar
  35. Shagrir, O., & Pitowsky, I. (2003). Physical hypercomputation and the Church–Turing thesis. Minds and Machines, 13(1), 87–101.CrossRefMATHGoogle Scholar
  36. Shannon, C. E. (1941). A mathematical theory of the differential analyser. Journal of Mathematics and Physics, 20, 337–354.MathSciNetCrossRefMATHGoogle Scholar
  37. Shor, P. W. (1997). Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal of Computing, 26, 1484–1509.MathSciNetCrossRefMATHGoogle Scholar
  38. Stannett, M. (2004). Hypercomputational models. In Alan Turing: Life and legacy of a great thinker, pp. 135–157. Springer.Google Scholar
  39. Turing, A. (1936). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 42, 230–265.MathSciNetMATHGoogle Scholar
  40. Van Leeuwen, J., & Wiedermann, J. (2000). Breaking the Turing barrier: The case of the Internet. Technical report, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague.Google Scholar
  41. Wegner, P., & Eberbach, E. (2004). New models of computation. The Computer Journal, 47(1), 4–9.CrossRefMATHGoogle Scholar
  42. Weihrauch, K. (2000). Computable analysis: An introduction. New York: Springer.CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.CNRS, IHPST, ANR-DFG Project «Beyond Logic»Université de Paris 1Panthéon-SorbonneParisFrance

Personalised recommendations