Minds and Machines

, Volume 26, Issue 1–2, pp 31–59 | Cite as

The Revenge of Ecological Rationality: Strategy-Selection by Meta-Induction Within Changing Environments

Article

Abstract

According to the paradigm of adaptive rationality, successful inference and prediction methods tend to be local and frugal. As a complement to work within this paradigm, we investigate the problem of selecting an optimal combination of prediction methods from a given toolbox of such local methods, in the context of changing environments. These selection methods are called meta-inductive (MI) strategies, if they are based on the success-records of the toolbox-methods. No absolutely optimal MI strategy exists—a fact that we call the “revenge of ecological rationality”. Nevertheless one can show that a certain MI strategy exists, called “AW”, which is universally long-run optimal, with provably small short-run losses, in comparison to any set of prediction methods that it can use as input. We call this property universal access-optimality. Local and short-run improvements over AW are possible, but only at the cost of forfeiting universal access-optimality. The last part of the paper includes an empirical study of MI strategies in application to an 8-year-long data set from the Monash University Footy Tipping Competition.

Keywords

Prediction task Adaptive rationality Strategy selection Meta-induction Online learning 

Notes

Acknowledgments

Work on this paper was supported by the DFG Grant SCHU1566/9-1 as part of the priority program “New Frameworks of Rationality” (SPP 1516). For valuable help we are indebted to K.V. Katsikopolous, Ö. Simsek, A.P. Pedersen, R. Hertwig, M. Jekel, P. Grunwald, J.-W. Romeijn, and L. Martignon.

References

  1. Arnold, E. (2010). Can the best-alternative-justification solve Hume’s problem? Philosophy of Science, 77, 584–593.CrossRefGoogle Scholar
  2. Brighton, H. & Gigerenzer, G. (2012). How heuristics handle uncertainty. In Todd & Gigerenzer (eds.), (pp. 33–60). (Note: This article is an abbreviated version of Gigerenzer and Brighton 2009.)Google Scholar
  3. Carnap, R. (1950). Logical foundations of probability. Chicago: Univ. of Chicago Press.MATHGoogle Scholar
  4. Cesa-Bianchi, N., & Lugosi, G. (2006). Prediction, learning, and games. Cambridge: Cambridge Univ. Press.CrossRefMATHGoogle Scholar
  5. Czerlinski, J., Gigerenzer, G., & Goldstein, D. G. (1999). How good are simple heuristics? In: Gigerenzer et al. (Eds.), (pp. 97–118). Google Scholar
  6. De Finetti, B. (1974). Theory of probability. New York: John Wiley.MATHGoogle Scholar
  7. Dieckmann, A., & Todd, P. M. (2012). Simple rules for ordering cues in one-reason decision making. In: Todd & Gigerenzer (Eds.), (pp. 274–306).Google Scholar
  8. Feldbacher, C. (2012). Meta-induction and the wisdom of crowds. Analyse & Kritik, 34(2), 367–382.CrossRefGoogle Scholar
  9. Gigerenzer, G., & Brighton, H. (2009). Homo heuristicus: Why biased minds make better inferences. Topics in Cognitive Science, 1, 107–143.CrossRefGoogle Scholar
  10. Gigerenzer, G., Todd, P. M., & The ABC Research Group (Eds.). (1999). Simple heuristics that make us smart. Oxford: Oxford Univ. Press.Google Scholar
  11. Hertwig, R., Hoffrage, U., & The ABC Research Group. (2013). Simple heuristics in a social world. New York: Oxford University Press.Google Scholar
  12. Hoffrage, U., Hertwig, R., & Gigerenzer, G. (2000). Hindsight bias: A by-product of knowledge updating? Journal of Experimental Psychology. Learning, Memory, and Cognition, 26, 566–581.CrossRefGoogle Scholar
  13. Hogarth, R. M., & Karelaia, N. (2005). Ignoring information in binary choice with continuous variables: When is Less “More”? Journal of Mathematical Psychology, 49, 115–124.MathSciNetCrossRefMATHGoogle Scholar
  14. Howson, C., & Urbach, P. (1996). Scientific reasoning: The Bayesian approach (2nd ed.). Chicago: Open Court.Google Scholar
  15. Jekel, M., Glöckner, A., Fielder, S., & Bröder, A. (2012). The rationality of different kinds of intuitive decision processes. Synthese, 89(1), 147–160.CrossRefGoogle Scholar
  16. Katsikopoulos, K. V., & Martignon, L. (2006). Naive heuristics for paired comparisons. Journal of Mathematical Psychology, 50, 488–494.MathSciNetCrossRefMATHGoogle Scholar
  17. Katsikopoulos, K. V., Schooler, L. J., & Hertwig, R. (2010). The robust beauty of ordinary information. Psychological Review, 117(4), 1259–1266.CrossRefGoogle Scholar
  18. Kelly, K. (1996). The logic of reliable inquiry. New York: Oxford Univ. Press.MATHGoogle Scholar
  19. Martignon, L., & Hoffrage, U. (1999). Why does one-reason decision making work? In: Gigerenzer et al. (Eds.), (pp. 119–140).Google Scholar
  20. Popper, K. (1935/2002). Logic of discovery. London: Routledge.Google Scholar
  21. Rieskamp, J., & Dieckmann, A. (2012). Redundancy: Environment structure that simple heuristics can exploit. In Todd & Gigerenzer (eds.), (pp. 187–215).Google Scholar
  22. Rieskamp, J., & Otto, P. (2006). SSL: A theory of how people learn to select strategies. Journal of Experimental Psychology: General, 135(2), 207–236.CrossRefGoogle Scholar
  23. Schmitt, M., & Martignon, L. (2006). On the complexity of learning lexicographic strategies. Journal of Machine Learning Research, 7, 55–83.MathSciNetMATHGoogle Scholar
  24. Schurz, G. (2008). The meta-inductivist’s winning strategy in the prediction game: A new approach to Hume’s problem. Philosophy of Science, 75, 278–305.MathSciNetCrossRefGoogle Scholar
  25. Schurz, G. (2009). Meta-induction and social epistemology. Episteme, 6, 200–220.CrossRefGoogle Scholar
  26. Schurz, G. (2012). Meta-induction in epistemic networks and social spread of knowledge. Episteme, 9(2), 151–170.MathSciNetCrossRefGoogle Scholar
  27. Schurz, G. (2013). Philosophy of science: A unified approach. New York: Routledge.Google Scholar
  28. Schurz, G., & Thorn, P. (2014). TTB vs. Franklin’s rule in environments of different redundancy. Appendix to G. Schurz, Instrumental justifications of normative systems of reasoning. Frontiers in Psychology, 5, article 625, July 2014. doi: 10.3389/fpsyg.2014.00625.
  29. Shanks, D. R., Douglas, L. M., & Holyoak, K. J. (Eds.). (1996). The psychology of learning and motivation. San Diego, CA: Academic Press.Google Scholar
  30. Simon, H. A. (1982). Models of bounded rationality (Vol. 1). Cambridge, MA: MIT Press.Google Scholar
  31. Solomonoff, R.J. (1964). A formal theory of inductive inference. Information and Control, 7, 1–22 (part I), 224–254 (part II).Google Scholar
  32. Thorn, P., & Schurz, G. (2012). Meta-induction and the wisdom of crowds. Analyse & Kritik, 34(2), 339–366.CrossRefGoogle Scholar
  33. Todd, P. M., & Gigerenzer, G. (Eds.). (2012). Ecological rationality: intelligence in the world. New York: Oxford University Press.Google Scholar
  34. Vickers, J. (2010). The problem of induction. In E. N. Zalta (Ed.) The Stanford Encyclopedia of Philosophy (Spring 2010 Edition). http://plato.stanford.edu/archives/spr2010/entries/induction-problem.
  35. Weibull, J. (1995). Evolutionary game theory. Cambridge, MA: MIT Press.MATHGoogle Scholar
  36. Wells, A. J. (2005). Rethinking cognitive computation: Turing and the science of the mind. Basingstoke: Palgrave.Google Scholar
  37. Wolpert, D. H. (1996). The lack of a priori distinctions between learning algorithms. Neural Computation, 8(7), 1341–1390.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of PhilosophyHeinrich Heine University DuesseldorfDüsseldorfGermany

Personalised recommendations