Minds and Machines

, Volume 26, Issue 1–2, pp 31–59 | Cite as

The Revenge of Ecological Rationality: Strategy-Selection by Meta-Induction Within Changing Environments

Article

Abstract

According to the paradigm of adaptive rationality, successful inference and prediction methods tend to be local and frugal. As a complement to work within this paradigm, we investigate the problem of selecting an optimal combination of prediction methods from a given toolbox of such local methods, in the context of changing environments. These selection methods are called meta-inductive (MI) strategies, if they are based on the success-records of the toolbox-methods. No absolutely optimal MI strategy exists—a fact that we call the “revenge of ecological rationality”. Nevertheless one can show that a certain MI strategy exists, called “AW”, which is universally long-run optimal, with provably small short-run losses, in comparison to any set of prediction methods that it can use as input. We call this property universal access-optimality. Local and short-run improvements over AW are possible, but only at the cost of forfeiting universal access-optimality. The last part of the paper includes an empirical study of MI strategies in application to an 8-year-long data set from the Monash University Footy Tipping Competition.

Keywords

Prediction task Adaptive rationality Strategy selection Meta-induction Online learning 

References

  1. Arnold, E. (2010). Can the best-alternative-justification solve Hume’s problem? Philosophy of Science, 77, 584–593.CrossRefGoogle Scholar
  2. Brighton, H. & Gigerenzer, G. (2012). How heuristics handle uncertainty. In Todd & Gigerenzer (eds.), (pp. 33–60). (Note: This article is an abbreviated version of Gigerenzer and Brighton 2009.)Google Scholar
  3. Carnap, R. (1950). Logical foundations of probability. Chicago: Univ. of Chicago Press.MATHGoogle Scholar
  4. Cesa-Bianchi, N., & Lugosi, G. (2006). Prediction, learning, and games. Cambridge: Cambridge Univ. Press.CrossRefMATHGoogle Scholar
  5. Czerlinski, J., Gigerenzer, G., & Goldstein, D. G. (1999). How good are simple heuristics? In: Gigerenzer et al. (Eds.), (pp. 97–118). Google Scholar
  6. De Finetti, B. (1974). Theory of probability. New York: John Wiley.MATHGoogle Scholar
  7. Dieckmann, A., & Todd, P. M. (2012). Simple rules for ordering cues in one-reason decision making. In: Todd & Gigerenzer (Eds.), (pp. 274–306).Google Scholar
  8. Feldbacher, C. (2012). Meta-induction and the wisdom of crowds. Analyse & Kritik, 34(2), 367–382.CrossRefGoogle Scholar
  9. Gigerenzer, G., & Brighton, H. (2009). Homo heuristicus: Why biased minds make better inferences. Topics in Cognitive Science, 1, 107–143.CrossRefGoogle Scholar
  10. Gigerenzer, G., Todd, P. M., & The ABC Research Group (Eds.). (1999). Simple heuristics that make us smart. Oxford: Oxford Univ. Press.Google Scholar
  11. Hertwig, R., Hoffrage, U., & The ABC Research Group. (2013). Simple heuristics in a social world. New York: Oxford University Press.Google Scholar
  12. Hoffrage, U., Hertwig, R., & Gigerenzer, G. (2000). Hindsight bias: A by-product of knowledge updating? Journal of Experimental Psychology. Learning, Memory, and Cognition, 26, 566–581.CrossRefGoogle Scholar
  13. Hogarth, R. M., & Karelaia, N. (2005). Ignoring information in binary choice with continuous variables: When is Less “More”? Journal of Mathematical Psychology, 49, 115–124.MathSciNetCrossRefMATHGoogle Scholar
  14. Howson, C., & Urbach, P. (1996). Scientific reasoning: The Bayesian approach (2nd ed.). Chicago: Open Court.Google Scholar
  15. Jekel, M., Glöckner, A., Fielder, S., & Bröder, A. (2012). The rationality of different kinds of intuitive decision processes. Synthese, 89(1), 147–160.CrossRefGoogle Scholar
  16. Katsikopoulos, K. V., & Martignon, L. (2006). Naive heuristics for paired comparisons. Journal of Mathematical Psychology, 50, 488–494.MathSciNetCrossRefMATHGoogle Scholar
  17. Katsikopoulos, K. V., Schooler, L. J., & Hertwig, R. (2010). The robust beauty of ordinary information. Psychological Review, 117(4), 1259–1266.CrossRefGoogle Scholar
  18. Kelly, K. (1996). The logic of reliable inquiry. New York: Oxford Univ. Press.MATHGoogle Scholar
  19. Martignon, L., & Hoffrage, U. (1999). Why does one-reason decision making work? In: Gigerenzer et al. (Eds.), (pp. 119–140).Google Scholar
  20. Popper, K. (1935/2002). Logic of discovery. London: Routledge.Google Scholar
  21. Rieskamp, J., & Dieckmann, A. (2012). Redundancy: Environment structure that simple heuristics can exploit. In Todd & Gigerenzer (eds.), (pp. 187–215).Google Scholar
  22. Rieskamp, J., & Otto, P. (2006). SSL: A theory of how people learn to select strategies. Journal of Experimental Psychology: General, 135(2), 207–236.CrossRefGoogle Scholar
  23. Schmitt, M., & Martignon, L. (2006). On the complexity of learning lexicographic strategies. Journal of Machine Learning Research, 7, 55–83.MathSciNetMATHGoogle Scholar
  24. Schurz, G. (2008). The meta-inductivist’s winning strategy in the prediction game: A new approach to Hume’s problem. Philosophy of Science, 75, 278–305.MathSciNetCrossRefGoogle Scholar
  25. Schurz, G. (2009). Meta-induction and social epistemology. Episteme, 6, 200–220.CrossRefGoogle Scholar
  26. Schurz, G. (2012). Meta-induction in epistemic networks and social spread of knowledge. Episteme, 9(2), 151–170.MathSciNetCrossRefGoogle Scholar
  27. Schurz, G. (2013). Philosophy of science: A unified approach. New York: Routledge.Google Scholar
  28. Schurz, G., & Thorn, P. (2014). TTB vs. Franklin’s rule in environments of different redundancy. Appendix to G. Schurz, Instrumental justifications of normative systems of reasoning. Frontiers in Psychology, 5, article 625, July 2014. doi:10.3389/fpsyg.2014.00625.
  29. Shanks, D. R., Douglas, L. M., & Holyoak, K. J. (Eds.). (1996). The psychology of learning and motivation. San Diego, CA: Academic Press.Google Scholar
  30. Simon, H. A. (1982). Models of bounded rationality (Vol. 1). Cambridge, MA: MIT Press.Google Scholar
  31. Solomonoff, R.J. (1964). A formal theory of inductive inference. Information and Control, 7, 1–22 (part I), 224–254 (part II).Google Scholar
  32. Thorn, P., & Schurz, G. (2012). Meta-induction and the wisdom of crowds. Analyse & Kritik, 34(2), 339–366.CrossRefGoogle Scholar
  33. Todd, P. M., & Gigerenzer, G. (Eds.). (2012). Ecological rationality: intelligence in the world. New York: Oxford University Press.Google Scholar
  34. Vickers, J. (2010). The problem of induction. In E. N. Zalta (Ed.) The Stanford Encyclopedia of Philosophy (Spring 2010 Edition). http://plato.stanford.edu/archives/spr2010/entries/induction-problem.
  35. Weibull, J. (1995). Evolutionary game theory. Cambridge, MA: MIT Press.MATHGoogle Scholar
  36. Wells, A. J. (2005). Rethinking cognitive computation: Turing and the science of the mind. Basingstoke: Palgrave.Google Scholar
  37. Wolpert, D. H. (1996). The lack of a priori distinctions between learning algorithms. Neural Computation, 8(7), 1341–1390.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of PhilosophyHeinrich Heine University DuesseldorfDüsseldorfGermany

Personalised recommendations