Advertisement

Minds and Machines

, Volume 25, Issue 1, pp 1–15 | Cite as

Cognitive Representation of a Complex Motor Action Executed by Different Motor Systems

  • Heiko LexEmail author
  • Christoph Schütz
  • Andreas Knoblauch
  • Thomas Schack
Article

Abstract

The present study evaluates the cognitive representation of a kicking movement performed by a human and a humanoid robot, and how they are represented in experts and novices of soccer and robotics, respectively. To learn about the expertise-dependent development of memory structures, we compared the representation structures of soccer experts and robot experts concerning a human and humanoid robot kicking movement. We found different cognitive representation structures for both expertise groups under two different motor performance conditions (human vs. humanoid robot). In general, the expertise relies on the perceptual-motor knowledge of the human motor system. Thus, the soccer experts’ cognitive representation of the humanoid robot movement is dominated by their representation of the corresponding human movement. Additionally, our results suggest that robot experts, in contrast to soccer experts, access functional features of the technical system of the humanoid robot in addition to their perceptual-motor knowledge about the human motor system. Thus, their perceptual-motor and neuro-functional machine representation are integrated into a cognitive representation of the humanoid robot movement.

Keywords

Neuro-functional machine representation Perceptual-motor representation Expertise Motor system Humanoid robot Human movement 

Notes

Acknowledgments

This work gratefully acknowledges the financial support from Honda Research Institute Europe for the project: Cognitive planning and motor adaptation in manual action. We thank the reviewers for their critical comments and suggestions, which helped us to improve the manuscript substantially.

References

  1. Abeele, S., & Bock, O. (2003). Transfer of sensorimotor adaptation between different movement categories. Experimental Brain Research, 148(1), 128–132.CrossRefGoogle Scholar
  2. Aglioti, S. M., Cesari, P., Romani, M., & Urgesi, C. (2008). Action anticipation and motor resonance in elite basketball players. Nature Neuroscience, 11(9), 1109–1116. doi: 10.1038/nn.2182.CrossRefGoogle Scholar
  3. Blakemore, S. J., & Decety, J. (2001). From the perception of action to the understanding of intention. Nature Reviews Neuroscience, 2(8), 561–567.Google Scholar
  4. Bläsing, B., Tenenbaum, G., & Schack, T. (2009). The cognitive structure of movements in classical dance. Psychology of Sport and Exercise, 10(3), 350–360.CrossRefGoogle Scholar
  5. Calvo-Merino, B., Glaser, D. E., Grezes, J., Passingham, R. E., & Haggard, P. (2005). Action observation and acquired motor skills: An fMRI study with expert dancers. Cerebral Cortex, 15(8), 1243–1249.CrossRefGoogle Scholar
  6. Calvo-Merino, B., Grezes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2006). Seeing or doing? Influence of visual and motor familiarity in action observation. Current Biology, 16(22), 1905–1910. doi: 10.1016/j.cub.2006.07.065.CrossRefGoogle Scholar
  7. Ericsson, K. A., Krampe, R. T., & Tesch-Römer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100(3), 363–406. doi: 10.1037/0033-295X.100.3.363.CrossRefGoogle Scholar
  8. Flach, R., Knoblich, G., & Prinz, W. (2004). Recognizing one’s own clapping: The role of temporal cues. Psychological Research, 69(1–2), 147–156. doi: 10.1007/s00426-003-0165-2.CrossRefGoogle Scholar
  9. Flanagan, J. R., & Johansson, R. S. (2003). Action plans used in action observation. Nature, 424(6950), 769–771.CrossRefGoogle Scholar
  10. Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119, 593–609.CrossRefGoogle Scholar
  11. Gibson, J. J. (1977). The theory of affordances. In R. Shaw & J. Bransford (Eds.), Perceiving, acting, and knowing: Toward an ecological psychology (pp. 67–82). Hillsdale, NJ: Erlbaum.Google Scholar
  12. Grezès, J., & Decety, J. (2001). Functional anatomy of execution, mental simulation, observation, and verb generation of actions: A meta-analysis. Human Brain Mapping, 12(1), 1–19.CrossRefGoogle Scholar
  13. Jeannerod, M. (2001). Neural simulation of action: A unifying mechanism for motor cognition. Neuroimage, 14(1), 103–109. doi: 10.1006/nimg.2001.0832.CrossRefGoogle Scholar
  14. Kilner, J. M., Paulignan, Y., & Blakemore, S. J. (2003). An interference effect of observed biological movement on action. Current Biology, 13(6), 522–525.CrossRefGoogle Scholar
  15. Knoblich, G., & Jordan, J. S. (2003). Action coordination in groups and individuals: Learning anticipatory control. Journal of Experimental Psychology. Learning, Memory, and Cognition, 29(5), 1006–1016. doi: 10.1037/0278-7393.29.5.1006.CrossRefGoogle Scholar
  16. Knoblich, G., & Prinz, W. (2001). Recognition of self-generated actions from kinematic displays of drawing. Journal of Experimental Psychology: Human Perception and Performance, 27(2), 456–465. doi: 10.1037/0096-1523.27.2.456.Google Scholar
  17. Lees, A., & Nolan, L. (1998). The biomechanics of soccer: A review. Journal of Sport Science, 16(3), 211–234.CrossRefGoogle Scholar
  18. Lex, H., Weigelt, M., Knoblauch, A., & Schack, T. (2012). Functional relationship between cognitive representations of movement directions and visuomotor adaptation performance. Experimental Brain Research, 223(4), 457–467.CrossRefGoogle Scholar
  19. Lex, H., Weigelt, M., Knoblauch, A., & Schack, T. (2014). The functional role of cognitive frameworks on visuomotor adaptation performance. Journal of Motor Behavior, 46(6), 389–396. doi: 10.1080/00222895.2014.920290.
  20. Mervis, C. B., & Rosch, E. (1981). Categorization of natural objects. Annual Review of Psychology, 32, 89–115. doi: 10.1146/annurev.ps.32.020181.000513.CrossRefGoogle Scholar
  21. Meulenbroek, R. G., Rosenbaum, D. A., Thomassen, A. J., Loukopoulos, L. D., & Vaughan, J. (1996). Adaptation of a reaching model to handwriting: How different effectors can produce the same written output, and other results. Psychological Research, 59(1), 64–74.CrossRefGoogle Scholar
  22. Pfeifer, R., & Bongard, J. (2007). How the body shapes the way we think: A new view of intelligence. Cambidge: The MIT Press.Google Scholar
  23. Pfeifer, R., Lungarella, M., & Iida, F. (2007). Self-organization, embodiment, and biologically inspired robotics. Science, 318(5853), 1088–1093.CrossRefGoogle Scholar
  24. Press, C. (2011). Action observation and robotic agents: Learning and anthropomorphism. Neuroscience and Biobehavioral Reviews, 35(6), 1410–1418.CrossRefGoogle Scholar
  25. Pulvermüller, F. (2005). Brain mechanisms linking language and action. Nature Reviews Neuroscience, 6(7), 576–582.CrossRefGoogle Scholar
  26. Rosenbaum, D. A., Carlson, R. A., & Gilmore, R. O. (2001). Acquisition of intellectual and perceptual-motor skills. Annual Review of Psychology, 52, 453–470.CrossRefGoogle Scholar
  27. Schack, T. (2003). The relationship between motor representation and biomechanical parameters in complex movements: Towards an integrative perspective of movement science. European Journal of Sport Science, 3(2), 1–13. doi: 10.1080/17461390300073201.CrossRefGoogle Scholar
  28. Schack, T. (2004). The cognitive architecture of complex movement. International Journal of Sport and Exercise Psychology, 2(4), 403–438.CrossRefGoogle Scholar
  29. Schack, T. (2011). Measuring mental representations. In G. Tenenbaum, R. C. Eklund, & A. Kamata (Eds.), Handbook of measurement in sport and exercise psychology (Vol. 1). Champaign, IL: Human Kinetics.Google Scholar
  30. Schack, T., Bläsing, B., Hughes, C. M. L, Flash, T., & Schilling, M. (2014). Elements and construction of motor control. In: A. G. Papaioannou & D. Hackfort (Eds.), Routledge companion to sport and exercise psychology: Global perspectives and fundamental concepts (pp. 308–323). New York: Routledge.Google Scholar
  31. Schack, T., & Mechsner, F. (2006). Representation of motor skills in human long-term memory. Neuroscience Letters, 391(3), 77–81. doi: 10.1016/j.neulet.2005.10.009.CrossRefGoogle Scholar
  32. Schack, T., & Ritter, H. (2009). The cognitive nature of action—Functional links between cognitive psychology, movement science, and robotics. Progress in Brain Research, 174, 231–250. doi: 10.1016/S0079-6123(09)01319-3.CrossRefGoogle Scholar
  33. Schack, T., & Ritter, H. (2013). Representation and learning in motor action—Bridges between experimental research and cognitive robotics. New Ideas in Psychology, 31(3), 258–269. doi: 10.1016/j.newideapsych.2013.04.003.CrossRefGoogle Scholar
  34. Schmidt, R. A., & Lee, T. D. (2005). Motor control and learning: A behavioral emphasis. Champaign, IL: Human Kinetics.Google Scholar
  35. Sebanz, N., Bekkering, H., & Knoblich, G. (2006). Joint action: Bodies and minds moving together. Trends in Cognitive Sciences, 10(2), 70–76. doi: 10.1016/j.tics.2005.12.009.CrossRefGoogle Scholar
  36. Ward, P., & Williams, A. M. (2003). Perceptual and cognitive skill development in soccer: The multidimensional nature of expert performance. Journal of Sport & Exercise Psychology, 25(1), 93–111.MathSciNetGoogle Scholar
  37. Weigelt, M., Ahlmeyer, T., Lex, H., & Schack, T. (2011). The cognitive representation of a throwing technique in judo experts—Technological ways for individual skill diagnostics in high-performance sports. Psychology of Sport and Exercise, 12(3), 231–235.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Heiko Lex
    • 1
    Email author
  • Christoph Schütz
    • 1
  • Andreas Knoblauch
    • 2
  • Thomas Schack
    • 1
  1. 1.Neurocognition and Action - Biomechanics - Research Group, Faculty of Psychology and Sports Science, Institute of Sports ScienceBielefeld UniversityBielefeldGermany
  2. 2.Engineering FacultyAlbstadt-Sigmaringen UniversitySigmaringenGermany

Personalised recommendations