Advertisement

Minds and Machines

, Volume 24, Issue 3, pp 249–273 | Cite as

A Taxonomy of Errors for Information Systems

  • Giuseppe Primiero
Article

Abstract

We provide a full characterization of computational error states for information systems. The class of errors considered is general enough to include human rational processes, logical reasoning, scientific progress and data processing in some functional programming languages. The aim is to reach a full taxonomy of error states by analysing the recovery and processing of data. We conclude by presenting machine-readable checking and resolve algorithms.

Keywords

Errors Informational semantics Type-checking 

Notes

Acknowledgements

Drafts of this paper were discussed at the Fourth Workshop in the Philosophy of Information, University of Hertfordshire and at the Conference on Judgement and Justification, University of Tampere. I wish to thank the participants for helpful discussions. Two anonymous referees have offered criticisms and remarks that have helped clarifying various passages of this work. My personal thanks to Patrick Allo for his comments and observations.

References

  1. Agarwal, B. B., Gupta, M., & Tayal, S. P. (2009). Software engineering and testing: an introduction. Jones & Bartlett Learning, Burlington, MA.Google Scholar
  2. Allchin, D. (2000). The epistemology of errors. In Philosophy of science association, Vancouver.Google Scholar
  3. Allchin, D. (2001). Error types. Perspectives on Science, 9, 38–59.CrossRefGoogle Scholar
  4. Allo, P., & Mares, E. (2012). Informational semantics as a third alternative? Erkenntnis, 77(2), 167–185.Google Scholar
  5. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., & Patel-Schneider, P. (Eds.). (2003). The description logic handbook. Theory, implementation and applications. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  6. Baker, L. R. (2009). The metaphysics of malfunction. Techné: Research in Philosophy and Technology, 13(2), 82–92.Google Scholar
  7. Beaver, D. (2001). Presupposition and assertion in dynamic semantics. Stanford: CSLI Publications.Google Scholar
  8. Bonnay, D., & Egre’, P. (2011). Knowing one’s limits—An analysis in centered dynamic epistemic logic. In: P. Girard, O. Roy, M. Marion (Eds.), Dynamic Formal Epistemology, Synthese Library (Vol. 351, pp 103–126).Google Scholar
  9. Curry, H. B., & Feys, R. (1958). Combinatory logic, volume I. North-Holland. Second printing 1968.Google Scholar
  10. Curry, H. B. (1934). Functionality in combinatory logic. Proceedings of the National Academy of Science USA, 20, 584–590.CrossRefGoogle Scholar
  11. Floridi, L. (2006). The logic of being informed. Logique & Analyse, 196, 433–460.MathSciNetGoogle Scholar
  12. Floridi, L. (2009). Philosophical conceptions of information. In G. Sommaruga (Ed.), Formal theories of information, volume 5363 of lectures notes in computer science (pp. 13–53). SpringerGoogle Scholar
  13. Franssen, M. (2008). Design, use, and the physical and intentional aspects of technical artifacts. In: A. Light, P. E. Vermaas, P. Kroes & S. A. Moore (Eds.), Philosophy and design: From engineering to architecture (pp. 21–35). Berlin: Springer.CrossRefGoogle Scholar
  14. Howard, W. (1980). The formulae-as-types notion of construction. In: J. Seldin & J. Hindley (Eds.), To H. B. Curry: Essays on combinatory logic, lambda calculus and formalism (pp. 479–490). London :Academic Press.Google Scholar
  15. Jespersen, B. (2012). A new logic of technical malfunction. Studia Logica. doi: 10.1007/s11225-012-9397-8.
  16. Jespersen, B., & Carrara, M. (2011). Two conceptions of technical malfunction. Theoria, 77, 117–138.CrossRefGoogle Scholar
  17. Mayo, D. G. (1996). Error and the growth of experimental knowledge. Chicago: Chicago University Press.CrossRefGoogle Scholar
  18. Mayo, D. G. (2010). Learning from error severe testing, and the growth of theoretical knowledge. In: D. Mayo & A. Spanos (Eds.), Error and inference. Cambridge: Cambridge University Press.Google Scholar
  19. Michaelson, G. (1989). Functional programming through λ-calculus. New York: Dover.Google Scholar
  20. Peirce, C. S. (1878). Illustrations of the logic of science vi: Deduction, induction, and hypothesis. Popular Science Monthly, 13 Google Scholar
  21. Popper, K. R. (1963). Conjectures and refutations. London: Routledge & Keagan.Google Scholar
  22. Primiero, G. (2009). An epistemic logic for becoming informed. Synthese (KRA), 167(2), 363–389.CrossRefzbMATHMathSciNetGoogle Scholar
  23. Primiero, G. (2012). Offline and online data: On upgrading functional information to knowledge. Philosophical Studies. doi: 10.1007/s11098-012-9860-4
  24. Reason, J. (1990). Human error. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  25. Sørensen, M. H., & Urzyczyn, P. (2006). Lectures on the Curry–Howard isomorphism volume 149 of studies in logic and the foundations of mathematics. Amsterdam: Elsevier.Google Scholar
  26. Sundholm, B. G. (2012). Error. Topoi, 31(1), 87–92.Google Scholar
  27. Turner, R. (2011). Specification. Minds & Machines, 21(2), 135–152.CrossRefGoogle Scholar
  28. Williamson, T. (1992). Inexact knowledge. Mind, 101(402), 217–241.CrossRefMathSciNetGoogle Scholar
  29. Williamson, T. (1994). Vagueness. London: Routledge.Google Scholar
  30. Williamson, T. (2002). Knowledge and its limits. Oxford :Oxford University Press.CrossRefGoogle Scholar
  31. Woods, H. (2004). The death of argument: Fallacies in agent-based reasoning. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.FWO, Research Foundation Flanders, Centre for Logic and Philosophy of ScienceGhent UniversityGhentBelgium

Personalised recommendations