Minds and Machines

, Volume 22, Issue 4, pp 325–351

Probabilistic Belief Contraction

  • Raghav Ramachandran
  • Arthur Ramer
  • Abhaya C. Nayak


Probabilistic belief contraction has been a much neglected topic in the field of probabilistic reasoning. This is due to the difficulty in establishing a reasonable reversal of the effect of Bayesian conditionalization on a probabilistic distribution. We show that indifferent contraction, a solution proposed by Ramer to this problem through a judicious use of the principle of maximum entropy, is a probabilistic version of a full meet contraction. We then propose variations of indifferent contraction, using both the Shannon entropy measure as well as the Hartley entropy measure, with an aim to avoid excessive loss of beliefs that full meet contraction entails.


Probabilistic belief change Belief contraction Partial meet contraction Principle of maximum entropy Shannon entropy Hartley entropy 


  1. Aczél, J., Forte, B., & Ng, C. T. (1974). Why the Shannon and Hartley entropies are ‘natural’. Advances in Applied Probability, 6 (1), 131–146.MathSciNetMATHCrossRefGoogle Scholar
  2. Alchourrón, C. E., Gärdenfors, P., & Makinson, D. (1985). On the logic of theory change: Partial meet contraction and revision functions. Journal of Symbolic Logic, 50, 510–530.MathSciNetMATHCrossRefGoogle Scholar
  3. Boutilier, C. (1995). On the revision of probabilistic belief states. Notre Dame Journal of Formal Logic, 36.Google Scholar
  4. Chan, H., & Darwiche, A. (2005). On the revision of probabilistic beliefs using uncertain evidence. Artificial Intelligence, 163(1), 67–90.MathSciNetMATHCrossRefGoogle Scholar
  5. Csiszár, I. (2008). Axiomatic characterizations of information measures. Entropy, 10(3), 261–273.MATHCrossRefGoogle Scholar
  6. de Finetti, B. (1974). Theory of probability, vol i, ii. Wiley, 1990.Google Scholar
  7. Dempster, A. P. (1967). Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematical Society, 38(2), 325–339.MathSciNetMATHCrossRefGoogle Scholar
  8. Diaconis, P., & Zabell, S. L. (1982). Updating subjective probability. Journal of the American Statistical Association, 77(380), 822–830.MathSciNetMATHCrossRefGoogle Scholar
  9. Friedman, N., & Halpern, J. Y. (1999). Belief revision: A critique. Journal of Logic, Language and Information, 8(4), 401–420.MathSciNetMATHCrossRefGoogle Scholar
  10. Gärdenfors, P. (1986). The dynamics of belief: Contractions and revisions of probability functions. Topoi, 5(1), 29–37.MathSciNetCrossRefGoogle Scholar
  11. Gärdenfors, P. (1988). Knowledge in flux: Modeling the dynamics of epistemic states. Cambridge, Massachusetts: Bradford Books, MIT Press.MATHGoogle Scholar
  12. Gärdenfors, P., & Sahlin, N. -E. (1982). Unreliable probabilities, risk taking, and decision making. Synthese, 53, 361–386.MathSciNetMATHCrossRefGoogle Scholar
  13. Gray, R. (1990). Entropy and information theory. Berlin: Springer.MATHGoogle Scholar
  14. Grove, A. (1988). Two modellings for theory change. Journal of Philosophical Logic, 17, 157–170.MathSciNetMATHCrossRefGoogle Scholar
  15. Grove, A., & Halpern, J. (1998) . Updating sets of probabilities. In Proceedings of the fourteenth annual conference on uncertainty in artificial intelligence (uai-98), (pp. 173–180). San Francisco, CA: Morgan Kaufmann.Google Scholar
  16. Grove, A., Halpern, J., & Koller, D. (1994). Random worlds and maximum entropy. Journal of Artificial Intelligence Research, 2, 33–88.MathSciNetMATHGoogle Scholar
  17. Hailperin, T. (1988). The development of probability logic from leibniz to maccoll. History and Philosophy of Logic, 9(2), 131–191.MathSciNetMATHCrossRefGoogle Scholar
  18. Hájek, A. (2001). Probability, logic, and probability logic. In The blackwell guide to philosophical logic (pp. 362–384). Blackwell 24.Google Scholar
  19. Harper, W. L. (1976). Rational conceptual change. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, 1976, pp. 462–494.Google Scholar
  20. Hartley, V. R. (1928). Transmission of information. Bell System Technical Journal, 7, 535–563.Google Scholar
  21. Hosiasson-Lindenbaum, J. (1940). On confirmation. The Journal of Symbolic Logic, 5(4), 133–148.MathSciNetMATHCrossRefGoogle Scholar
  22. Jaynes, E. T. (1983). Where do we stand on maximum entropy? In R. D. Rosenkrantz (Ed.), Papers on probability, statistics and statistical physics (pp. 210–314). Dordrecht, Holland: D. Reidel Publishing Company.Google Scholar
  23. Jeffrey, R. (1983). Bayesianism with a human face. In J. Earman (Ed.), Testing scientific theories (pp. 133–156). Minneapolis: University of Minnesota Press.Google Scholar
  24. Kern-Isberner, G. (1998). Characterizing the principle of minimum crossentropy within a conditional-logical framework. Artificial Intelligence, 98(1–2), 169–208.MathSciNetMATHCrossRefGoogle Scholar
  25. Kern-Isberner, G., & Lukasiewicz, T. (2004). Combining probabilistic logic programming with the power of maximum entropy. Artificial Intelligence, 157(1–2), 139–202.MathSciNetMATHCrossRefGoogle Scholar
  26. Kern-Isberner, G., & Rödder, W. (2004). Belief revision and information fusion on optimum entropy. International Journal of Intelligent Systems, 19(9), 837–857.MATHCrossRefGoogle Scholar
  27. Koopman, B. O. (1940). The axioms and algebra of intuitive probability. The Annals of Mathematics, 41(2), 269–292.MathSciNetCrossRefGoogle Scholar
  28. Kyburg, H. E. (1961). Probability and the logic of rational belief. Middletown: Wesleyan University Press.Google Scholar
  29. Levi, I. (1967). Gambling with truth. New York: Knopf.Google Scholar
  30. Levi, I. (1974). On indeterminate probabilities. The Journal of Philosophy, 71(13), 391–418.CrossRefGoogle Scholar
  31. Levi, I. (1977). Subjunctives, dispositions and chances. Synthese, 34, 423–455.MATHCrossRefGoogle Scholar
  32. Levi, I. (1999). Are full beliefs abstractions from credal states? In Spinning ideas, electronic essays dedicated to peter gärdenfors on his fiftieth birthday. http://www.lucs.lu.se/spinning/index.html.
  33. Lindström, S., & Rabinowicz, W. (1989). On probabilistic representation of non-probabilistic belief revision. Journal of Philosophical Logic, 18, 69–101.MathSciNetMATHCrossRefGoogle Scholar
  34. Makinson, D. (2011). Conditional Probability in the Light of Qualitative Belief Change. Journal of Philosophical Logic, 40, 121–153.MathSciNetMATHCrossRefGoogle Scholar
  35. Olsson, E. J. (1995). Can information theory help us remove outdated beliefs? In Lund university cognitive studies, vol. 36.Google Scholar
  36. Paris, J. B. (1994). The uncertain reasoner’s companion: A mathematical perspective. Cambridge: Cambridge University Press.MATHGoogle Scholar
  37. Popper, K. (1959). The logic of scientific discovery, 2nd edn. New York: Basic Books.MATHGoogle Scholar
  38. Ramer, A. (2003). Belief revision as combinatorial optimization. In R. B. Bouchon-Meunier, L. Foulloy (Ed.), Intelligent systems for information processing (pp. 253–264) Elsevier. Probabilistic Belief Contraction 25.Google Scholar
  39. Rényi, A. (1955). On a new axiomatic theory of probability. Acta Mathematica Hungarica, 6, 285–335.MATHCrossRefGoogle Scholar
  40. Rott, H., & Pagnucco, M. (1999). Severe withdrawal (and recovery). Journal of Philosophical Logic, 28, 501–547.MathSciNetMATHCrossRefGoogle Scholar
  41. Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Champaign: University of Illinois Press.MATHGoogle Scholar
  42. Shore, J. E., & Johnson, R. W. (1980). Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. Information Theory, IEEE Transactions on, 26(1), 26–37.MathSciNetMATHCrossRefGoogle Scholar
  43. van Fraassen, B. C. (1976). Representational of conditional probabilities. Journal of Philosophical Logic, 5(3), 417–430.MATHGoogle Scholar
  44. van Fraassen, B. C. (1980). Rational belief and probability kinematics. Philosophy of Science, 47(2), 165–187.MathSciNetCrossRefGoogle Scholar
  45. van Fraassen, B. C. (1995). Fine-grained opinion, probability, and the logic of full belief. Journal of Philosophical Logic, 24(4).Google Scholar
  46. Walley, P. (1991). Statistical reasoning with imprecise probabilities. London: Chapman and Hall.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Raghav Ramachandran
    • 1
  • Arthur Ramer
    • 2
  • Abhaya C. Nayak
    • 1
  1. 1.Department of ComputingMacquarie UniversitySydneyAustralia
  2. 2.School of Computer Science and EngineeringUniversity of New South WalesSydneyAustralia

Personalised recommendations