Minds and Machines

, Volume 22, Issue 3, pp 149–165 | Cite as

Empirical Encounters with Computational Irreducibility and Unpredictability

  • Hector Zenil
  • Fernando Soler-Toscano
  • Joost J. Joosten
Article

Abstract

The paper presents an exploration of conceptual issues that have arisen in the course of investigating speed-up and slowdown phenomena in small Turing machines, in particular results of a test that may spur experimental approaches to the notion of computational irreducibility. The test involves a systematic attempt to outrun the computation of a large number of small Turing machines (3 and 4 state, 2 symbol) by means of integer sequence prediction using a specialized function for that purpose. The experiment prompts an investigation into rates of convergence of decision procedures and the decidability of sets in addition to a discussion of the (un)predictability of deterministic computing systems in practice. We think this investigation constitutes a novel approach to the discussion of an epistemological question in the context of a computer simulation, and thus represents an interesting exploration at the boundary between philosophical concerns and computational experiments.

Keywords

Computational irreducibility Unpredictability Problem of induction Algorithmic epistemology Halting problem 

References

  1. Blum, M. (1971). On effective procedures for speeding up algorithms. Journal of Association for Computing Machinery, 18, 290–305.MathSciNetMATHCrossRefGoogle Scholar
  2. Calude, C. S., & Stay, M. A. (2005). Most programs stop quickly or never halt. Advances in Applied Mathematics, 40, 295–308.MathSciNetCrossRefGoogle Scholar
  3. Deutsch, D. (1998). The fabric of reality: The science of parallel universes and its implications. Penguin (Non-Classics).Google Scholar
  4. Helm, J. P., & Young, P. R. (1971). On size versus efficiency for programs admitting speedup. The Journal of Symbolic Logic, 36, 21–27.MathSciNetMATHCrossRefGoogle Scholar
  5. Israeli, N., & Goldenfeld, N. (2004). Computational irreducibility and the predictability of complex physical systems. Physical Review Letters, 92(7).Google Scholar
  6. Joosten, J., Soler, F., & Zenil, H. (2010). Time vs. program-size complexity: Speed-up and slowdown phenomena in small turing machines. International Journal of Unconventional Computing (forthcoming).Google Scholar
  7. Levin, L. (1977). On a concrete method of assigning complexity measures. Doklady Akademii nauk SSSR, 18(3), 727–731.MATHGoogle Scholar
  8. Lin, S., & Rado, T. (1965). Computer studies of turing machine problems. Journal of Association for Computing Machinery, 12, 196–212.MathSciNetMATHCrossRefGoogle Scholar
  9. Meyer, A. R., & Fischer, P. C. (1972). Computational speedup by effective operators. Journal of Symbolic Logic, 37(1), 55–68.Google Scholar
  10. Schnorr, C.-P. (1971). Zufälligkeit und Wahrscheinlichkeit. Eine algorithmische Begründung der Wahrscheinlichkeitstheorie. Berlin: Springer.MATHGoogle Scholar
  11. Schnorr, C. P. (1973). Does computational speedup concern programing? In M. Nivat (Ed.), Automata, languages and programming. (pp. 585–592). Amsterdam: Elsevier.Google Scholar
  12. Sutner, K. (2003). Cellular automata and intermediate degrees. Theoretical Computer Science, 296, 365–375.MathSciNetMATHCrossRefGoogle Scholar
  13. van Emde Boas, P. (1975). Ten years of speedup. In Proceedings of MFCS (pp. 13–29).Google Scholar
  14. Wolfram, S. (2002). A new kind of science. Wolfram Media.Google Scholar
  15. Wolfram Mathematica Documentation Center, FindSequenceFunction. http://reference.wolfram.com/mathematica/ref/DifferenceRoot.html. Accessed October, 2011.
  16. Wolfram Mathematica Documentation Center, DifferenceRoot. http://reference.wolfram.com/mathematica/ref/FindSequenceFunction.html. Accessed October, 2011.
  17. Zenil, H. (2010). Compression-based investigation of the dynamical properties of cellular automata and other systems. Complex Systems, 19(1), 1–28.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Hector Zenil
    • 1
  • Fernando Soler-Toscano
    • 2
  • Joost J. Joosten
    • 2
    • 3
  1. 1.Department of Computer ScienceUniversity of SheffieldSheffieldUK
  2. 2.Grupo de Lógica, Lenguaje e Información, Departamento de Filosofía, Lógica, y Filosofía de la CienciaUniversidad de SevillaSevilleSpain
  3. 3.Departamento Lògica, Història i Filosofia de la CiènciaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations