Minds and Machines

, Volume 20, Issue 1, pp 119–143 | Cite as

Indistinguishable from Magic: Computation is Cognitive Technology



This paper explains how mathematical computation can be constructed from weaker recursive patterns typical of natural languages. A thought experiment is used to describe the formalization of computational rules, or arithmetical axioms, using only orally-based natural language capabilities, and motivated by two accomplishments of ancient Indian mathematics and linguistics. One accomplishment is the expression of positional value using versified Sanskrit number words in addition to orthodox inscribed numerals. The second is Pāṇini’s invention, around the fifth century BCE, of a formal grammar for spoken Sanskrit, expressed in oral verse extending ordinary Sanskrit, and using recursive methods rediscovered in the twentieth century. The Sanskrit positional number compounds and Pāṇini’s formal system are construed as linguistic grammaticalizations relying on tacit cognitive models of symbolic form. The thought experiment shows that universal computation can be constructed from natural language structure and skills, and shows why intentional capabilities needed for language use play a role in computation across all media. The evolution of writing and positional number systems in Mesopotamia is used to transfer the thought experiment of “oral arithmetic” to inscribed computation. The thought experiment and historical evidence combine to show how and why mathematical computation is a cognitive technology extending generic symbolic skills associated with language structure, usage, and change.


Computation Formal grammar Positional value Sanskrit Pāṇini Rewrite systems Intentionality Grammaticalization Writing 


  1. Aarsleff, H. (1982). From Locke to Saussure: Essays on the study of language and intellectual history. London: Athlone.Google Scholar
  2. Barber, C. (2000). The English language (Rev. ed.). New York: Cambridge University Press.Google Scholar
  3. Baron-Cohen, S. (1997). Mindblindness: An essay on autism and theory of mind. New York: Cambridge University Press.Google Scholar
  4. Bloom, P. (1994). Generativity within language and other cognitive domains. Cognition, 51, 177–189. doi: 10.1016/0010-0277(94)90014-0.CrossRefGoogle Scholar
  5. Bloomfield, L. (1933). Language. New York: Holt.Google Scholar
  6. Boas, F., & Powell, J.W. (1911/1966). Introduction to handbook of American Indian languages. Lincoln: University of Nebraska Press.Google Scholar
  7. Boolos, G., & Jeffrey, R. (1979). Computability and logic. New York: Cambridge University Press.Google Scholar
  8. Bybee, J. (2003). Cognitive processes in grammaticalization. In M. Tomasello (Ed.), The New psychology of language vol. 2: Cognitive and functional approaches to language structure (pp. 145–168). Mahwah, New Jersey: Lawrence Erlbaum.Google Scholar
  9. Chomsky, N. (1963). Formal properties of grammars. In R. D. Luce, et al. (Eds.), Handbook of mathematical psychology (Vol. II, pp. 323–418). New York: Wiley.Google Scholar
  10. Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge, MA: MIT.Google Scholar
  11. Chomsky, N. (1980). Rules and representations. New York: Columbia University Press.Google Scholar
  12. Clark, H. (1996). Using language. New York: Cambridge University Press.CrossRefGoogle Scholar
  13. Coulmas, F. (2003). Writing systems. New York: Cambridge University Press.Google Scholar
  14. Crystal, D. (1987). The Cambridge encyclopedia of language. New York: Cambridge University Press.Google Scholar
  15. Datta, B., & Singh, A. N. (1935/2001). History of Hindu mathematics I, II. Delhi: Bharatiya Kala Prakashan.Google Scholar
  16. Davis, M. (Ed.). (1965). The undecidable: Basic papers on undecidable propositions, unsolvable problems and computable functions. Hewlett, New York: Raven Press.Google Scholar
  17. Dehaene, S. (1997). The number sense: How the mind creates mathematics. New York: Oxford University Press.MATHGoogle Scholar
  18. Deutscher, G. (2005). The unfolding of language. New York: Metropolitan Books.Google Scholar
  19. Dijksterhuis, E. J. (1938/1987). Archimedes (C. Dikshoorn, Trans.). Princeton, New Jersey: Princeton University Press.Google Scholar
  20. Everett, D. (2005). Cultural constraints on grammar and cognition in Pirahã. Current Anthropology, 46, 621–646. doi: 10.1086/431525.CrossRefGoogle Scholar
  21. Fowler, D. H. (1994). Could the Greeks have used mathematical induction? Did they use it? Physis, 28, 273–289.Google Scholar
  22. Fowler, D. H. (1999). The mathematics of Plato’s academy (2nd ed.). Oxford: Clarendon.MATHGoogle Scholar
  23. Frege, G. (1884/1968). The foundations of arithmetic (J. Austin, Trans.). Evanston, Illinois: Northwestern University Press.Google Scholar
  24. Gentner, D., & Goldin-Meadow, S. (Eds.). (2003). Language in mind: Advances in the study of language and thought. Cambridge, MA: MIT.Google Scholar
  25. Gillon, B. (2007). Pāṇini’s Aṣṭādhyāyī and linguistic theory. Journal of Indian Philosophy, 35, 445–468. doi: 10.1007/s10781-007-9027-3.CrossRefGoogle Scholar
  26. Goody, J. (1987). The interface between the written and the oral. New York: Cambridge University Press.Google Scholar
  27. Harris, R. (1986). The origin of writing. La Salle, Illinois: Open Court.Google Scholar
  28. Hofstader, D. (1985). Metafont, metamathematics, and metaphysics. In Metamagical themas: Questing for the essence of mind and pattern (pp. 260–300). New York: Basic Books.Google Scholar
  29. Høyrup, J. (1994). Mathematics and early state formation, or the Janus face of early Mesopotamian mathematics: Bureaucratic tool and expression of scribal professional autonomy. In In Measure, number, and weight (pp. 45–88). Albany, NY: State University Press of New York.Google Scholar
  30. Ifrah, G. (2000). The universal history of numbers: From prehistory to the invention of the computer (D. Bellos et al., Trans.). New York: Wiley.Google Scholar
  31. Jackendoff, R. (2002). Foundations of language. New York: Oxford University Press.CrossRefGoogle Scholar
  32. Jakobson, R. (1990). On language. L. Waugh & M. Monville-Burston (Eds.), Cambridge, MA: Harvard University Press.Google Scholar
  33. Kadvany, J. (2007). Positional value and linguistic recursion. Journal of Indian Philosophy, 35, 487–520. doi: 10.1007/s10781-007-9025-5.CrossRefGoogle Scholar
  34. Karmiloff-Smith, A. (1992). Beyond modularity: A developmental approach to cognitive science. Cambridge, MA: MIT.Google Scholar
  35. Krantz, D., Luce, R. D., Suppes, P., & Tversky, A. (1971). Foundations of measurement volume 1: Additive and polynomial representations. New York: Academic Press.Google Scholar
  36. Kripke, S. (2000). From the Church-Turing thesis to the first-order algorithm theorem. In Proceedings of the 15th annual IEEE symposium on logic in computer science 177. Washington, DC: IEEE Computer Society.Google Scholar
  37. Leslie, A. (1987). Pretense and representation: The origins of “theory of mind”. Psychological Review, 94, 412–426. doi: 10.1037/0033-295X.94.4.412.CrossRefGoogle Scholar
  38. Leslie, A. (1994). Pretending and believing: Issues in the theory of ToMM. Cognition, 50, 211–238. doi: 10.1016/0010-0277(94)90029-9.CrossRefGoogle Scholar
  39. Levinson, S. (2003). Space in language and cognition: Explorations in cognitive diversity. New York: Cambridge University Press.CrossRefGoogle Scholar
  40. McWhorter, J. (2001). The power of Babel. New York: Henry Holt.Google Scholar
  41. Minsky, M. (1967). Computation: finite and infinite machines. New York: Prentice-Hall.MATHGoogle Scholar
  42. Nissen, H., Damerow, P., & Englund, R. (1993). Archaic bookkeeping: Writing and techniques of economic administration in the anicent near east (P. Larsen, Trans.). Chicago: University of Chicago Press.Google Scholar
  43. Olson, D. (1994). The world on paper. New York: Cambridge University Press.Google Scholar
  44. Ostler, N. (2005). Empires of the word. New York: Harper Collins.Google Scholar
  45. Pinker, S. (1994). The language instinct. New York: William Morrow.Google Scholar
  46. Powell, M. (1976). The antecedents of old Babylonian place notation and the early history of Babylonian mathematics. Historia Mathematica, 3, 417–439. doi: 10.1016/0315-0860(76)90071-9.MATHCrossRefMathSciNetGoogle Scholar
  47. Pullum, G., & Scholz, B. (2005). Contrasting applications of logic in natural language syntactic description. In ed. P. Hájek et al. (Eds.), Logic, methodology and philosophy of science: Proceedings of the twelfth international congress (pp. 481–503). London: King’s College Publications.Google Scholar
  48. Renou, L. (1941/1972). Les connexions entre le rituel et la grammaire en sanskrit. In J. F. Staal (Ed.), A reader in the Sanskrit grammarians (pp. 435–469). Cambridge, MA: MIT.Google Scholar
  49. Robson, E. (2003). Tables and tabular formatting in Sumer, Babylonia, and Assyria, 2500 BCE-50 CE. In M. Campbell-Kelly, et al. (Eds.), The history of mathematical tables from Sumer to spreadsheets (pp. 18–47). New York: Oxford University Press.Google Scholar
  50. Sapir, E. (1921/1949). Language: An introduction to the study of speech. San Francisco: Harcourt Brace.Google Scholar
  51. Saussure, F. (1915/1959). Course in general linguistics (W. Baskin, Trans.). C. Bally et al. (Eds.), New York: McGraw-Hill.Google Scholar
  52. Schmandt-Besserat, D. (1992). From counting to cuneiform (Vol. 1). Austin: University of Texas Press.Google Scholar
  53. Searle, J. (1983). Intentionality: An essay in the philosophy of mind. New York: Cambridge University Press.Google Scholar
  54. Searle, J. (1992). The rediscovery of the mind. New York: Cambridge University Press.Google Scholar
  55. Sharma, R. N. (1987). The Aṣṭādhyāyī of Pāṇini I: Introduction to the Aṣṭādhyāyī as a grammatical device. New Delhi: Munshiram Manoharlal.Google Scholar
  56. Sieg, W. (2008). Church without dogma: Axioms for computability. In B. Lowe, et al. (Eds.), New computational paradigms (pp. 139–152). New York: Springer.CrossRefGoogle Scholar
  57. Slobin, D. (2003). Language and thought online: Cognitive consequences of linguistic relativity. In Gentner and Goldin-Meadow (pp. 157–192).Google Scholar
  58. Staal, J. F. (1975). The concept of metalanguage and its Indian background. Journal of Indian Philosophy, 3, 315–354. doi: 10.1007/BF02629150.CrossRefGoogle Scholar
  59. Staal, J. F. (1988). Euclid and Pāṇini. In Universals: Studies in Indian logic and linguistics (pp. 143–160). Chicago: University of Chicago Press.Google Scholar
  60. Staal, J. F. (1990). Ritual and mantras: Rules without meaning. Delhi: Motilal Banarsidass.Google Scholar
  61. Staal, J. F. (1995). The Sanskrit of science. Journal of Indian Philosophy, 23, 73–127. doi: 10.1007/BF01062067.CrossRefGoogle Scholar
  62. Staal, J. F. (2006). Artificial languages across sciences and civilizations. Journal of Indian Philosophy, 34, 87–139.CrossRefGoogle Scholar
  63. Tomasello, M. (1999). The social origins of human cognition. Cambridge, MA: Harvard University Press.Google Scholar
  64. Tomasello, M. (2003). Constructing a language: A usage-based theory of language acquistion. Cambridge, MA: Harvard University Press.Google Scholar
  65. Unguru, S. (1991). Greek mathematics and mathematical induction. Physis, 28, 273–289.MATHMathSciNetGoogle Scholar
  66. von Herder, J. G. (1772/2002). Treatise on the origin of language. In Philosophical writings (M. Forster, Ed. and Trans.) (pp. 65–166). New York: Cambridge University Press.Google Scholar
  67. Whorf, B. L. (1956). J. Carroll (Ed.), Language, thought and reality: Selected writings of Benjamin Lee Whorf. Cambridge, MA: MIT.Google Scholar
  68. Williams, M. (1846/2005). An elementary grammar of the Sanscrit language. New Delhi: Cosmo.Google Scholar
  69. Woepcke, F. (1863). Mémoire sur la Propagation des Chiffres Indiens. Journal Asiatique, Sixth Series, 1, 442–529. (Reprinted in F. Sezgin (Ed.). Franz Woepcke, Études sur les Mathématiques Arabo-Islamiques, vol. 2. Frankfurt: Institute for the History of Arabic-Islamic Science and the Goethe University, 1986).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Policy & Decision ScienceMenlo ParkUSA

Personalised recommendations