Advertisement

Minds and Machines

, Volume 19, Issue 3, pp 319–343 | Cite as

Enaction-Based Artificial Intelligence: Toward Co-evolution with Humans in the Loop

  • Pierre De LoorEmail author
  • Kristen Manac’h
  • Jacques Tisseau
Article

Abstract

This article deals with the links between the enaction paradigm and artificial intelligence. Enaction is considered a metaphor for artificial intelligence, as a number of the notions which it deals with are deemed incompatible with the phenomenal field of the virtual. After explaining this stance, we shall review previous works regarding this issue in terms of artificial life and robotics. We shall focus on the lack of recognition of co-evolution at the heart of these approaches. We propose to explicitly integrate the evolution of the environment into our approach in order to refine the ontogenesis of the artificial system, and to compare it with the enaction paradigm. The growing complexity of the ontogenetic mechanisms to be activated can therefore be compensated by an interactive guidance system emanating from the environment. This proposition does not however, resolve that of the relevance of the meaning created by the machine (sense-making). Such reflections lead us to integrate human interaction into this environment in order to construct relevant meaning in terms of participative artificial intelligence. This raises a number of questions with regards to setting up an enactive interaction. The article concludes by exploring a number of issues, thereby enabling us to associate current approaches with the principles of morphogenesis, guidance, the phenomenology of interactions and the use of minimal enactive interfaces in setting up experiments which will deal with the problem of artificial intelligence in a variety of enaction-based ways.

Keywords

Enaction Embodied-embedded AI Sense-making Co-evolution Guidance Phylogenesis/ontogenesis ratio Human in the loop Virtual reality 

References

  1. Ashby, W. (1960). Design for a brain: The origin of adaptive behavior (2nd ed.). London: Chapman and Hall.Google Scholar
  2. Aubin, J. (1991). Viability theory. Basel: Birkhuser.zbMATHGoogle Scholar
  3. Auvray, M., Hanneton, S., Lenay, C., & O’Regan, K. (2005). There is something out there: Distal attribution in sensory substitution, twenty years later. Journal of Integrative Neuroscience, 4, 505–521.CrossRefGoogle Scholar
  4. Beer, R. (2000). Dynamical approaches to cognitive science. Trends in Cognitive Sciences, 4(3), 91–99.CrossRefMathSciNetGoogle Scholar
  5. Beer, R. (2004). Autopoiesis and cognition in the game of life. Artificial Life, 10(3), 309–326.CrossRefGoogle Scholar
  6. Beer, R., & Gallagher, J. (1992). Evolving dynamical neural networks for adaptive behavior. Adaptive Behavior, 1(1), 91–122.CrossRefGoogle Scholar
  7. Bersini, H., & Sener, P. (2002). Le chaos dans les rseaux de neurones. In Approche dynamique de la cognition artificielle (pp. 45–58). Hermes, Trait des sciences cognitives.Google Scholar
  8. Beurier, G., Michel, F., & Ferber, J. (2006). A morphogenesis model for multiagent embryogeny. In Artificial life X, Proceedings of the 10th international conference (pp. 84–90).Google Scholar
  9. Beurier, G., Simonin, O., & Ferber, J. (2002). Model and simulation of multimodel emergence. In Procedings of IEEE ISSPIT (pp. 231–236).Google Scholar
  10. Bickhard, M. H. (2003). The biological emergence of representation. In: T. Brown, & L. Smith (Eds.), Emergence and reduction: Proceedings of the 29th annual symposium of the Jean Piaget Society (pp. 105–131).Google Scholar
  11. Bourgine, P., & Stewart, J. (2004). Autopoiesis and cognition. Artificial Life, 10, 327–345.CrossRefGoogle Scholar
  12. Brogni, A., Vinayagamoorthy, V., Steed, A., & Slater, M. (2007). Responses of participants during an immersive virtual environment experience. The International Journal of Virtual Reality, 6(2), 1–10.Google Scholar
  13. Brooks, R. (1991). Intelligence without representation. Artificial Intelligence, 47, 139–159.CrossRefGoogle Scholar
  14. Butz, M. V., Goldberg, D. E., & Stolzmann, W. (2000). Investigating generalization in the anticipatory classifier system. In Proceedings of parallel problem solving from nature (PPSN VI). Also technical report 2000014 of the Illinois Genetic Algorithms Laboratory.Google Scholar
  15. Chalmer, D. (1995). Facing up to the problem of consciousness. Journal of Consciousness Studies, 2, 200–219.Google Scholar
  16. Chandrasekharan, S., & Stewart, T. (2007). The origin of epistemic structures and proto-representations. Adaptive Behavior, 15(3), 329–353.CrossRefGoogle Scholar
  17. Clark, A. (1999). An embodied cognitive science? Trends in Cognitive Science, 9, 345–351.CrossRefGoogle Scholar
  18. Daucé, E. (2002). Systèmes dynamiques pour les sciences cognitives. In Approche dynamique de la cognition artificielle (pp. 33–44). Hermes, Traité des sciences cognitives.Google Scholar
  19. Daucé, E., Quoy, M., Cessac, B., Doyon, B., & Samuelides, M. (1998). Selforganization and dynamics reduction in recurrent networks: Stimulus presentation and learning. Neural Networks, 11, 521–533.CrossRefGoogle Scholar
  20. De Jaegher, H., & Di Paolo, E. (2007). Participatory sense-making an enactive approach to social cognition. Phenomenology and the Cognitive Sciences, 6(4), 485–507.Google Scholar
  21. De Loor, P., Bénard, R., & Bossard, C. (2008). Interactive co-construction to study dynamical collaborative situations. To appear in the Proceedings in the international conference on virtual reality, laval virtual.Google Scholar
  22. Dellaert, F., & Beer, R. (1994). Toward an evolvable model of development for autonomous agent synthesis. In: Artificial Life IV, Proceedings of the 4th international workshop on the synthesis and simulation of living systems (pp. 246–257).Google Scholar
  23. Dempster, B. (2000). Sympoietic and autopoietic systems: A new distinction for self-organizing systems. In Proceedings of the world congress of the systems sciences and ISSS 2000 (pp. 1–18).Google Scholar
  24. Desmeulles, G., Querrec, G., Redou, P., Kerdlo, S., Misery, L., Rodin, V., et al. (2006). The virtual reality applied to the biology understanding: The in virtuo experimentation. Expert Systems with Applications, 30(1), 82–92.CrossRefGoogle Scholar
  25. Di Paolo, E. (2000). Homeostatic adaptation to inversion in the visual field and other sensorimotor disruptions. In J. Meyer, A. Berthoz, D. Floreano, H. Roitblat, & S.Wilson (Eds.), From animals to animats 6. Proceedings of the VI international conference on simulation of adaptove behavior (pp. 440–449).Google Scholar
  26. Di Paolo, E. (2005). Autopoiesis, adaptivity, teleology, agency. Phenomenology and the Cognitive Sciences, 4, 429–452.CrossRefGoogle Scholar
  27. Di Paolo, E., & Iizuka, H. (2008). How (not) to model autonomous behavior. BioSystems, 91(2), 409–423.CrossRefGoogle Scholar
  28. Di Paolo, E., Rohde, M., & De Jaegher, H. (2007). Horizons for the enactive minds: Value, social interaction, and play. Cognitive Science Research Paper, 587.Google Scholar
  29. Dittrich, P., Ziegler, J., & Banzhaf, W. (2001). Artificial chemistries—a review. Artificial Life, 7(3), 225–275.CrossRefGoogle Scholar
  30. Drescher, G. (1991). Made-up minds. A constructivist approach to artificial intelligence. Cambridge, MA: MIT Press.zbMATHGoogle Scholar
  31. Dreyfus, H. (1979). What computers can’t do. The limits of artificial intelli-gence. New York: Harper&Row, Publisher, Inc.Google Scholar
  32. Dreyfus, H. (2007). Why Heideggerian AI failed and how fixing it would require making it more Heideggerian. Philosophical Psychology, 20(2), 247–268.CrossRefGoogle Scholar
  33. Eggenberger, P. (2004). Genome-physics interaction as a new concept to reduce the number of genetic parameters in artificial evolution. In R. Sarke, R. Reynolds, H. Abbass, K.-C. Tan, R. McKay, D. Essam, & T. Gedeon (Eds.), Proceedings of the IEEE 2003 congress on evolutionary computation (pp. 191–198). Congress of Evolutionary Computation.Google Scholar
  34. Favier, P., & De Loor, P. (2006). From decision to action: Intentionality, a guide for the specification of intelligent agents’ behaviour. International Journal of Image and Graphics, 6(1), 87–99.CrossRefGoogle Scholar
  35. Federici, D., & Downing, K. (2006). Evolution and development of a multicellular organism: Scalability, resilience, and neutral complexification. Artificial Life, 12(3), 381–409.CrossRefGoogle Scholar
  36. Floreano, D., Mitri, S., Magnenat, S., & Keller, L. (2007). Evolutionary conditions for the emergence of communication in robots. Current Biology, 17(6), 514–519.CrossRefGoogle Scholar
  37. Floreano, D., & Urzelai, J. (2000). Evolutionary robots with on-line selforganization and behavioral fitness. Neural Networks, 13, 431–443.CrossRefGoogle Scholar
  38. Fodor, J. (2000). The mind doesn’t work that way. Cambridge, MA: MIT Press.Google Scholar
  39. Foerster, H. (1984). On constructing a reality. In The invented reality: How do we know what we belive we now? (Contributions to constructivism) (pp. 41–61). Northon and Company.Google Scholar
  40. Freeman, W. (2001). How brains make up their minds. New York: Columbia University Press.Google Scholar
  41. Freeman, W., & Sharkda, C. (1990). Representations: Who needs them? In Brain organization and memory cells, systems & circuits (pp. 375–380). New-York: Oxford University Press.Google Scholar
  42. Froese, T., & Ziemke, T. (2009). Enactive artificial intelligence: Investigating the systemic organization of life and mind. Artificial Intelligence, 173, 466–500.CrossRefGoogle Scholar
  43. Funahashi, K., & Nakamura, N. (1993). Approximation of dynamical systems by continuous time recurrent neural networks. Neural Networks, 6, 801–806.CrossRefGoogle Scholar
  44. Gapenne, O. (2008). Kinaesthetics and the construction of perceptual objects. In Enaction: A new paradigm for cognitive science. MIT Press.Google Scholar
  45. Gardner, M. (1970). The fantastic combinations of John Conway’s new solitaire game “life”. Scientific American, 223(4), 120–123.CrossRefGoogle Scholar
  46. Gerard, P., Stolzmann, W., & Sigaud, O. (2002). YACS, a new LCS using anticipation. Journal of Soft Computing, 6(3–4), 216–228.zbMATHGoogle Scholar
  47. Gershenson, C. (2004). Cognitive paradigms: Which one is the best? Cognitive Systems Research, 5(2), 135–156.CrossRefGoogle Scholar
  48. Gibson, J. (1966). The senses considered as perceptual systems. Boston: Houghton Mifflin.Google Scholar
  49. Glasersfeld, E. V. (1995). Radical constructivism: A way of knowing and learning. London: Falmer Press.Google Scholar
  50. Goldin, D., & Wegner, P. (2008). The interactive nature of computing: Refuting the strong Church–Turing thesis. Minds and Machines, 18(1), 17–38.CrossRefGoogle Scholar
  51. Gruau, F. (1994). Automatic definition of modular neural networks. Adaptive Behavior, 3, 151–183.CrossRefGoogle Scholar
  52. Hall, J. S. (2007). Self-improving AI: An analysis. Minds and Machines, 17(3), 249–259.CrossRefGoogle Scholar
  53. Hara, D. F., & Pfeifer, R. (2003). Morpho-functional machines the new species: Designing embodied intelligence. Berlin: Springer.Google Scholar
  54. Harnad, S. (1990). The symbol grounding problem. Physica, 42, 335–346.Google Scholar
  55. Harnad, S. (1993). Grounding symbols in the analog world with neural nets. NETS.THINK 2, 2, 1.Google Scholar
  56. Harvey, I., Di Paolo, E., Wood, R., Quinn, M., & Tuci, E. (2005). Evolutionary robotics: A new scientific tool for studying cognition. Artificial Life, 11, 79–98.CrossRefGoogle Scholar
  57. Henry, F., Daucé, E., & Soula, H. (2007). Temporal pattern identification using spike-timing dependent plasticity. Neurocomputing, 70, 2009–2016.CrossRefGoogle Scholar
  58. Holland, J. H., & Reitman, J. S. (1978). Cognitive systems based on adaptive algorithms. In D. A. Waterman, & F. Hayes-Roth (Eds.), Pattern-directed inference systems. New York: Academic Press. (Reprinted in: Evolutionary computation. The fossil record, ISBN: 0-7803-3481-7, by David B. Fogel Ed., 1998, IEEE Press.Google Scholar
  59. Hornby, G. S., & Pollack, J. (2002). Creating high-level components with a generative representation for body-brain evolution. Artificial Life, 8, 223–246.CrossRefGoogle Scholar
  60. Husserl, E. (1938). Experience et jugement. PUF (1991).Google Scholar
  61. Husserl, E. (1960). Cartesian meditations: An introduction to phenomenology (Dorian Cairns, Trans.). The Hagues: Martinus Nijhoff.Google Scholar
  62. Hutchins, E. (2005). Material anchors for conceptual blends. Journal of pragmatics, 37, 1555–1577.CrossRefGoogle Scholar
  63. Hutchins, E. (2006). Imagining the cognitive life of things. Presented at the symposium: “The Cognitive Lifer of Things: Recasting the boundaries of Mind”, organized at the McDonald Institute for Archeological Research, Cambridge University.Google Scholar
  64. Hutton, T. (2007). Evolvable self-reproducing cells in a two-dimensional artificial chemistry. Artificial Life, 13(1), 11–30.CrossRefMathSciNetGoogle Scholar
  65. Iizuka, H., & Di Paolo, E. (2007). Toward Spinozist robotics: Exploring the minimal dynamics of behavioural preference. Adaptive Behavior, 15, 359–376.CrossRefGoogle Scholar
  66. Ikegami, T., & Suzuki, K. (2008). From a homeostatic to a homeodynamic self. BioSystems, 91, 388–400.CrossRefGoogle Scholar
  67. Jonas, H. (1968). Biological foundations of individuality. International Philosophical Quartely, 8, 231–251.Google Scholar
  68. Kant, I. (1790). Kritik der urteilskraft. Hacket Publishing Compagny, 1987.Google Scholar
  69. Korb, K. B. (2004). The frame problem: An AI fairy tale. Minds and Machines, 8(3), 317–351.CrossRefMathSciNetGoogle Scholar
  70. Kosslyn, S., Thomson, W., & Ganis, G. (2006). The case for mental imagery. New York, NY: Oxford University Press.Google Scholar
  71. Lakoff, G., & Johnson, M. (1999). Philosophy in the flesh: The embodied mind and its challenge to western thought. New York: Basics Books.Google Scholar
  72. Langton, C. (1984). Self-reproduction in cellular automata. Physica D, 10, 135–144.CrossRefGoogle Scholar
  73. Laughlin, R. (2005). A different universe: Reinventing physics from the bottom down. New York: Basic Books.Google Scholar
  74. Lenay, C. (1996). Mental symbols and genetic symbols: analogies between theoretical perspectives in biology and cognitive science. Behavioural Processes, 35, 251–262.CrossRefGoogle Scholar
  75. Luciani, A., & Cadoz, C. (Eds.), (2007). In Enactive/07. enaction in arts. 4th International conference on enactive interfaces, Grenoble, France.Google Scholar
  76. Lutz, A., Lachaux, J., Martinerie, J., & Varela, J. (2001). Guiding the study of brain dynamics by using first-person data: Synchrony patterns correlate with ongoing conscious states during a simple visual task. In Proceedings of the national academy of sciences (pp. 1–6).Google Scholar
  77. Madina, D., Ono, N., & Ikegami, T. (2003). Cellular evolution in a 3D lattice artificial chemistry. In ECAL (pp. 59–68).Google Scholar
  78. Manac’h, K., & De Loor, P. (2007). Passage du discret au continu: identification des verrous pour la simulation de systmes autopoitiques. In ARCo’07, Colloque de l’Association pour la Recherche Cognitive. Cognition-Complexité-Collectif (pp. 29–30).Google Scholar
  79. Manac’h, K. & De Loor, P. (2009) Guiding for associative Learning: How to shape artificial dynamic cognition. To appear in the Proceedings of the 10th European conference on artificial life, Budapest.Google Scholar
  80. Mataric, M. J. (2001). Learning in behavior-based multi-robot systems: Policies, models, and other agents. Cognitive Systems Research, 2(1), 81–93.CrossRefGoogle Scholar
  81. Maturana, H., Uribe, G., & Frenk, S. (1968). A biological theory of relativistic colour coding in the primat retina. Archivos de Biología y Medicina Experimentales, 1, 1–30.Google Scholar
  82. Maturana, H., & Varela, F. (1980). Autopoiesis and cognition: The realization of the living. Boston: Reidel.Google Scholar
  83. McCarthy, J. (1969). Programs with common sense. In Semantic information processing (pp. 403–418). Cambridge: MIT.Google Scholar
  84. McCarthy, J., & Buva, S. (1998). Formalizing context (expanded notes). In A. Aliseda, R. van Glabbeek, & C. Westersthl (Eds.), Computing natural language, in CSLI Lecture Notes (Vol. 8, pp. 13–50). Stanford, CA: CSLI Publications.Google Scholar
  85. McGee, K. (2005). Enactive cognitive science. Part 1: Background and research themes. Constructivist Foundations, 1(1), 19–34.MathSciNetGoogle Scholar
  86. McGee, K. (2006). Enactive cognitive science. Part 2: Methods, insights, and potential. Constructivist Foundations, 1(2), 73–82.Google Scholar
  87. McGeer, T. (1990). Passive dynamic walking. International Journal of Robotics Research, 9(2), 62–82.CrossRefGoogle Scholar
  88. McMullin, B. (2004). Thirty years of computational autopoiesis: A review. Artificial Life, 10, 277–295.CrossRefGoogle Scholar
  89. Merleau-Ponty, M. (1945). Phénomnologie de la perception. Collection “Tel “, 1990. éditions gallimard edition.Google Scholar
  90. Miller, J. (2003). Evolving developmental programs for adaptation, morphogenesis, and self-repair. In Advances in artificial life: 7th European conference, LNAI (Vol. 2801, pp. 256–265).Google Scholar
  91. Minsky, M. (1982). Why people think computers can’t. AI Magazine, 3(4), 224–236.Google Scholar
  92. Moreno, A., Etxeberria, A., & Umerez, J. (2008). The autonomy of biological individuals and artificial models. BioSystems, 91, 308–319.CrossRefGoogle Scholar
  93. Morin, E. (1980). La vie de la vie (t. 2). Le Seuil, Nouvelle édition, coll. Points.Google Scholar
  94. Neildeiz, T. M. A., Parisot, A., Vignal, C., Rameau, P., Stockholm, D., Picot, J., et al. (2008). Epigenetic gene expression noise and phenotypic diversification of clonal cell populations. Differentiation, 76, 33–40.Google Scholar
  95. Noë, A. (2004). Action in perception. Cambridge, MA: MIT Press.Google Scholar
  96. Nolfi, S., & Floreano, D. (1998). How co-evolution can enhance the adaptive power of artificial evolution: Implications for evolutionary robotics. In Lecture notes in computer science (Vol. 1468, pp. 22–38). Berlin/Heidelberg: Springer.Google Scholar
  97. Nolfi, S., & Floreano, D. (2000). Evolutionnary robotics: The biology, intelligence, and technology of self-organizing machines. Cambridge, MA: MIT Press/Bradford Books.Google Scholar
  98. Nolfi, S., & Parisi, D. (1995).Genotypes for neural networks. In The handbook of brain theory and neural networks. Cambridge, MA: MIT Press.Google Scholar
  99. Nunez, R. (1999). Could the future taste purple? Reclaiming mind, body and cognition. Journal of Consciousness Studies, 6, 41–60.Google Scholar
  100. Parenthoën, M., & Tisseau, J. (2005). Enactive modeling. In Tutorial book of virtual concept (pp. 1–18). Biarritz, France: ENSIAME-LAMIH/LIPSIESTIA.Google Scholar
  101. Pfeifer, R., & Gomez, G. (2005). Interacting with the real world: design principles for intelligent systems. Artificial life and Robotics, 9(1), 1–6.CrossRefGoogle Scholar
  102. Pfeifer, R., & Scheier, C. (1999). Understanding intelligence. Cambridge, MA: MIT Press.Google Scholar
  103. Piaget, J. (1970). L’′epist′emologie g′en′etique. Paris: Que sais-je, PUF.Google Scholar
  104. Piaget, J. (1975). The requilibration of cognitive structures. The University of Chicago Press. (The original French edition: L’′equilibration des structures cognitives: Problème central du developpement, reprint 1985).Google Scholar
  105. Pylyshyn, Z. (1984). Computation and cognition: Toward a foundation for cognitive science. Cambridge, MA: The MIT Press.Google Scholar
  106. Pylyshyn, Z. (2003). Seeing and vizualizing: It’s not what you think. Cambridge: MIT/Bradford.Google Scholar
  107. Rohde, M., & Di Paolo, E. (2006). An evolutionary robotics simulation of human minimal social interaction (long abstract). In SAB’06 workshop on behaviour and mind as a complex adaptive system, Rome, Italy.Google Scholar
  108. Rohde, M., & Stewart, J. (2008). Ascriptional and ‘genuine’ autonomy. BioSystems Special issue on Modeling Autonomy, 91(2), 424–433.Google Scholar
  109. Rosch, E. (1999). Reclaiming concepts. In Reclaiming cognition: The primacy of action, intention, and emotion (pp. 61–67). Imprint Academic: Thorverton, UK.Google Scholar
  110. Rosenblatt, F. (1958). The perceptron: A probalistic model for information storage and organisation in the brain. Psychological Review, 65, 386–408.CrossRefMathSciNetGoogle Scholar
  111. Ruiz-Mirazo, K., & Mavelli, F. (2008). On the way toward ‘basic autonomous agents’: Stochatic simulations of minimal lipid-peptide cells. Biosystems, 91, 374–387.CrossRefGoogle Scholar
  112. Sanchez, M., & Slater, M. (2005). From presence to consciousness through virtual reality. Nature, 6, 332–339.Google Scholar
  113. Searle, J. (1997). The mystery of consciousness. review collection.Google Scholar
  114. Shanon, B. (1993). The representational and the presentational: An essay on cognition and the study of mind. London and New York: Harvester-Wheatsheaf and Prentice Hall.Google Scholar
  115. Sharkey, N., & Ziemke, T. (1998). Biological and physiological foundations. Connection Science, 10, 361–391.CrossRefGoogle Scholar
  116. Simon, H. (1969). The science of the artificial. Cambridge, MA: MIT Press.Google Scholar
  117. Stewart, J. (1996). Cognition = life: Implication for higher-level cognition. Behavioural Process, 35, 311–326.CrossRefGoogle Scholar
  118. Stewart, J., & Gapenne, O. (2004). Reciprocal modelling of active perception of 2-D forms in a simple tactile-vision substitution system. Minds and Machines, 14, 309–330.CrossRefGoogle Scholar
  119. Stewart, J., Gapenne, O., & Di Paolo, E. (2008). Enaction: A new paradigm for cognitive science. Cambridge, MA: MIT Press.Google Scholar
  120. Stockholm, D., Benchaouir, R., Picot, J., Rameau, P., Neildeiz, T. M. A., et al. (2007). The origin of phenotypic heterogeneity in a clonal cell population in vitro. PLoS ONE, 2(4), e394. doi: 10.1371/journal.pone.0000394.
  121. Strogatz, S. (1994). Nonlinear dynamics and chaos. Reading, MA: Addison-Wesley.Google Scholar
  122. Sutton, R., & Barto, A. (1998). Reinforcement learning. Cambridge, MA: MIT Press.Google Scholar
  123. Thompson, E. (2007). Look again: Phenomenology and mental imagery. Phenomenology and the Cognitive Science, 6, 137–170.CrossRefGoogle Scholar
  124. Thompson, E., & Varela, F. J. (2001). Radical embodiment: Neural dynamics and consciousness. Trends in Cognitive Sciences, 5(10), 418–425.CrossRefGoogle Scholar
  125. Tisseau, J. (2001). Virtual reality—in virtuo autonomy. Acreditation to direct research, field: Computer science, University of Brest.Google Scholar
  126. Turing, A. (1950). Computing machinery and intelligence. Minds, 59, 433–460.CrossRefMathSciNetGoogle Scholar
  127. Vaario, J. (1994). Artificial life as constructivist AI. Journal of SICE (Japanese Society of Instrument and Control Engineers), 33(1), 65–71.Google Scholar
  128. Varela, F. (1979). The principles of biological autonomy. New York: North Holland.Google Scholar
  129. Varela, F., Maturana, H., & Uribe, H. (1974). Autopoiesis: The organization of living systems, its characterization, and a model. Biosystems, 5, 187–196.CrossRefGoogle Scholar
  130. Varela, F., Thompson, E., & Rosch, E. (1993). The embodied mind. Cambridge, MA: MIT Press.Google Scholar
  131. Von Neumann, J. (1966). Theory of self-reproducing autonomata. Champaign, IL: Arthur Burks.Google Scholar
  132. von Uexküll, J. (1957). A stroll through the worlds of animals and men. In Instinctive behavior: The development of a modern concept (pp. 5–80).Google Scholar
  133. Vygotsky, L. S. (1986). Thought and language—rev’d edition. Cambridge, MA: The MIT Press.Google Scholar
  134. Watanabe, T., Koizumi, K., Kishi, K., Nakamura, M., Kobayashi, K., Kazuno, M., et al. (2007). A uniform framework of molecular interaction for an artificial chemistry with compartments. In Proceedings of the 2007 IEEE Symposium on Artificial Life (CI-ALife 2007) (pp. 54–60).Google Scholar
  135. Wilson, S. W. (1987). Classifier systems and the animat problem. Machine Learning, 2, 199–228. Also Research Memo RIS-36r, the Rowland Institute for Science, Cambridge, MA, 1986.Google Scholar
  136. Wood, R., & Di Paolo, E. A. (2007). New models for old questions: Evolutionary robotics and the ‘a not b’ error. In Springer (Ed.), Proceedings of the 9th European conference on artificial life ECAL 2007.Google Scholar
  137. Ziemke, T. (2001). The construction of ‘reality’ in the robot. Foundations of Science, 6(1), 163–233.CrossRefGoogle Scholar
  138. Ziemke, T. (2004). Embodied AI as science: Models of embodied cognition, embodied models of cognition, or both? LNAI, 3139, 27–36.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Pierre De Loor
    • 1
    Email author
  • Kristen Manac’h
    • 1
  • Jacques Tisseau
    • 1
  1. 1.Centre Européen de Réalité VirtuelleUEB-ENIB-LISyCBrestFrance

Personalised recommendations