Minds and Machines

, 19:391 | Cite as

A Brief Critique of Pure Hypercomputation



Hypercomputation—the hypothesis that Turing-incomputable objects can be computed through infinitary means—is ineffective, as the unsolvability of the halting problem for Turing machines depends just on the absence of a definite value for some paradoxical construction; nature and quantity of computing resources are immaterial. The assumption that the halting problem is solved by oracles of higher Turing degree amounts just to postulation; infinite-time oracles are not actually solving paradoxes, but simply assigning them conventional values. Special values for non-terminating processes are likewise irrelevant, since diagonalization can cover any amount of value assignments. This should not be construed as a restriction of computing power: Turing’s uncomputability is not a ‘barrier’ to be broken, but simply an effect of the expressive power of consistent programming systems.


Diagonalization Halting problem Hypercomputation Super-task Zeno machine 


  1. Akl, S. G., & Fraser, R. (2006). Accelerating machines. Technical Report 2006-510. Kingston, Ontario: Queen’s University.Google Scholar
  2. Bailey, D. H., Borwein, P. B., & Plouffe, S. (1997). On the rapid computation of various polylogarithmic constants. Mathematics of Computation, 66, 903–913.MATHCrossRefMathSciNetGoogle Scholar
  3. Barrow, J. D. (2005). The infinite book. London: Jonathan Cape.Google Scholar
  4. Bauer, A. (2006). First steps in synthetic computability theory. Electronic Notes in Theoretical Computer Science, 155, 5–31.CrossRefGoogle Scholar
  5. Benacerraf, P. (1962). Tasks, super-tasks, and the modern eleatics. The Journal of Philosophy, 59, 765–784.CrossRefGoogle Scholar
  6. Cooper, S. B. (2006). Definability as hypercomputational effect. Applied Mathematics and Computation, 178, 72–82.MATHCrossRefMathSciNetGoogle Scholar
  7. Cotogno, P. (2003). Hypercomputation and the physical Church-Turing thesis. The British Journal for the Philosophy of Science, 54, 181–223.MATHCrossRefMathSciNetGoogle Scholar
  8. Cotogno, P. (2007). A note on Gödel’s theorem and the rejection of Hilbert’s programme. Poster Presented at the Gödel Centenary Symposium. University of Vienna.Google Scholar
  9. Davis, M. (1982). Computability and unsolvability, (revised edition). New York: Dover.Google Scholar
  10. Davis, M. (2004). The myth of hypercomputation. In C. Teuscher (Ed.), Alan turing: The life and legacy of a great thinker (pp. 195–212). Berlin: Springer.Google Scholar
  11. Davis, M. (2006a). Computability, computation, and the real world. In S. Termini (Ed.), Imagination and rigor (pp. 63–70). Milan: Springer.CrossRefGoogle Scholar
  12. Davis, M. (2006b). Why there is no such discipline as hypercomputation. Applied Mathematics and Computation, 178, 4–7.MATHCrossRefMathSciNetGoogle Scholar
  13. Delong, H. (1970). A profile of mathematical logic. Reading: Addison-Wesley.MATHGoogle Scholar
  14. Feferman, S. (1992). Turing’s “Oracle”: From absolute to relative computability—and back. In J. Echeverria, A. Ibarra, & T. Mormann (Eds.), The space of mathematics (pp. 314–348). Berlin: de Gruyter.Google Scholar
  15. Gaifman, H. (2006). Naming and diagonalization, from Cantor to Gödel to Kleene. Logic Journal of the Interest Group in Pure and Applied Logic, 10, 709–728.MathSciNetGoogle Scholar
  16. Gorn, S. (1961). The treatment of ambiguity and paradox in mechanical language, Air Force Office of Scientific Research TN-603-61. Philadelphia: University of Pennsylvania.Google Scholar
  17. Hagar, A., & Korolev, A. (2006). Quantum hypercomputability? Minds and Machines, 16, 87–93.CrossRefGoogle Scholar
  18. Kieu, T. D., & Ord, T. (2005). The diagonal method and hypercomputation. British Journal for the Philosophy of Science, 56, 147–156.MATHCrossRefMathSciNetGoogle Scholar
  19. Kleene, S. C. (1974). Introduction to metamathematics. Amsterdam: North-Holland.Google Scholar
  20. Lawvere, F. W. (1969). Diagonal arguments and cartesian closed categories. In P. Hilton (Ed.), Category theory, homology theory and their applications II (pp. 134–145). Berlin: Springer.CrossRefGoogle Scholar
  21. Lawvere, F. W. (2006). Author commentary. Reprints in Theory and Applications of Categories, 15, 1–2.Google Scholar
  22. Lawvere, F. W., & Schanuel, S. H. (2007). Conceptual mathematics: A first introduction to categories. Cambridge: Cambridge University Press.Google Scholar
  23. Machtey, M., & Young, P. (1978). An introduction to the general theory of algorithms. New York: Elsevier.MATHGoogle Scholar
  24. McLaughlin, W. J. (1998). Thomson’s lamp is dysfunctional. Synthese, 116, 281–301.MATHCrossRefMathSciNetGoogle Scholar
  25. Ord, T. (2006). The many forms of hypercomputation. Applied Mathematics and Computation, 178, 143–153.MATHCrossRefMathSciNetGoogle Scholar
  26. Pavlović, D. (1992). On the structure of paradoxes. Archives for Mathematical Logic, 31, 397–406.MATHCrossRefGoogle Scholar
  27. Potgieter, P. H. (2006). Zeno machines and hypercomputation. Theoretical Computer Science, 358, 23–33.MATHCrossRefMathSciNetGoogle Scholar
  28. Shagrir, O. (2004). Super-tasks, accelerating Turing machines and uncomputability. Theoretical Computer Science, 317, 105–114.MATHCrossRefMathSciNetGoogle Scholar
  29. Silagadze, Z. (2005). Zeno and modern science. Acta Physica Polonica, B36, 2887–2930.Google Scholar
  30. Sipser, M. (2006). Introduction to the theory of computation, (2nd ed). Boston: Thomson.Google Scholar
  31. Smith, W. D. (2006). Three counterexamples refuting Kieu’s plan for “quantum adiabatic hypercomputation”, and some uncomputable quantum mechanical tasks. Applied Mathematics and Computation, 178, 184–193.MATHCrossRefMathSciNetGoogle Scholar
  32. Soto-Andrade, J., & Varela, F. J. (1984). Self-reference and fixed points: A discussion and an extension of Lawvere’s theorem. Acta Applicandae Mathematicae, 2, 1–19.MATHCrossRefMathSciNetGoogle Scholar
  33. Thomson, T. (1954). Tasks and super-tasks. Analysis, 15, 1–13.CrossRefGoogle Scholar
  34. Toffoli, T. (1998). Non-conventional computers. Encyclopedia of Electrical and Electronics Engineering, 14, 455–471. New York: Wiley.Google Scholar
  35. Turing, A. M. (2004). Systems of logic based on ordinals. Proceedings of the London Mathematical Society 45, 161–228 (1939). Reprinted in B. J. Copeland (Ed.), The essential turing (pp. 125-204). Oxford: Oxford University Press.Google Scholar
  36. Welch, P. D. (2004a). On the possibility, or otherwise, of hypercomputation. British Journal for the Philosophy of Science, 55, 739–746.MATHCrossRefMathSciNetGoogle Scholar
  37. Welch, P. D. (2004b). Post’s and other problems in higher supertasks. In B. Löwe, B. Piwinger, & T. Räsch (Eds.), Foundations of the formal sciences III (pp. 223–237). Dordrecht: Kluwer.Google Scholar
  38. Wells, B. (2004). Hypercomputation by definition. Theoretical Computer Science, 317, 191–207.MATHCrossRefMathSciNetGoogle Scholar
  39. Wiles, A. (1995). Modular elliptic curves and Fermat’s last theorem. Annals of Mathematics, 141, 443–55.MATHCrossRefMathSciNetGoogle Scholar
  40. Yanofsky, N. S. (2003). A universal approach to self-referential paradoxes, incompleteness and fixed points. Bulletin of Symbolic Logic, 9, 362–386.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.BresciaItaly

Personalised recommendations