Advertisement

Toward an accelerated adoption of data-driven findings in medicine

Research, skepticism, and the need to speed up public visibility of data-driven findings
  • Uri Kartoun
Short Communication

Abstract

To accelerate the adoption of a new method with a high potential to replace or extend an existing, presumably less accurate, medical scoring system, evaluation should begin days after the new concept is presented publicly, not years or even decades later. Metaphorically speaking, as chameleons capable of quickly changing colors to help their bodies adjust to changes in temperature or light, health-care decision makers should be capable of more quickly evaluating new data-driven insights and tools and should integrate the highest performing ones into national and international care systems. Doing so is essential, because it will truly save the lives of many individuals.

Keywords

Clinical informatics Prediction modeling Electronic medical records Machine-learning Data-mining Cirrhosis Liver transplantation 

Notes

Funding

The author received honoraria and travel funding from The American Association for the Study of Liver Diseases (October 2017).

Compliance with ethical standards

Conflict of interest

The author has declared that no competing interests exist. The author confirms that the commercial affiliation with IBM does not alter his adherence to all Medicine, Health Care and Philosophy policies.

References

  1. Ananthakrishnan, A. N., T. Cai, G. Savova, S. C. Cheng, P. Chen, R. G. Perez, V. S. Gainer, S. N. Murphy, P. Szolovits, Z. Xia, S. Shaw, S. Churchill, E. W. Karlson, I. Kohane, R. M. Plenge, and K. P. Liao. 2013. Improving case definition of Crohn’s disease and ulcerative colitis in electronic medical records using natural language processing: A novel informatics approach. Inflammatory Bowel Diseases 19 (7): 1411–1420.CrossRefGoogle Scholar
  2. Beam, A. L., U. Kartoun, J. K. Pai, A. K. Chatterjee, T. P. Fitzgerald, S. Y. Shaw, and I. S. Kohane. 2017. Predictive modeling of physician-patient dynamics that influence sleep medication prescriptions and clinical decision-making. Scientific Reports 7: 42282.CrossRefGoogle Scholar
  3. Bushak, L. 2015. Mad Scientist: 6 scientists who were dismissed as crazy, only to be proven right years later. Medical Daily, Nov 18, 2015.Google Scholar
  4. Byrne, C. D., and G. Targher. 2015. NAFLD: A multisystem disease. Journal of Hepatology 62: S47–S64.CrossRefGoogle Scholar
  5. Charlton, M. 2008. Cirrhosis and liver failure in nonalcoholic fatty liver disease: Molehill or mountain? Hepatology 47: 1431–1433.CrossRefGoogle Scholar
  6. Corey, K. E., U. Kartoun, H. Zheng, R. T. Chung, and S. Y. Shaw. 2016. Using an electronic medical records database to identify nontraditional cardiovascular risk factors in nonalcoholic fatty liver disease. The American Journal of Gastroenterology 111 (5): 671–676.CrossRefGoogle Scholar
  7. ElMaghawry, M., A. Zanatta, and F. Zampieri. 2014. The discovery of pulmonary circulation: From Imhotep to William Harvey. Global Cardiology Science and Practice 2014(2):103–116.Google Scholar
  8. Freeman, R. B. Jr, R. H. Wiesner, A. Harper, S. V. McDiarmid, J. Lake, E. Edwards, R. Merion, R. Wolfe, J. Turcotte, and L. Teperman. 2002. UNOS/OPTN Liver Disease Severity Score, UNOS/OPTN Liver and Intestine, and UNOS/OPTN Pediatric Transplantation Committees. The new liver allocation system: Moving toward evidence-based transplantation policy. Liver Transplantation 8 (9): 851–858.CrossRefGoogle Scholar
  9. Institute of Medicine. 1999. Analysis of waiting times. In Organ procurement and transplantation: Assessing current policies and the potential impact of the DHHS final rule, ed. Committee on Organ Procurement, and Transplantation Policy, 57–58. Washington, D.C.: National Academy Press.Google Scholar
  10. Kamath, P. S., and W. R. Kim. 2007. The model for end-stage liver disease (MELD). Hepatology 45 (3): 797–805.CrossRefGoogle Scholar
  11. Kartoun, U. 2017a. Text nailing: An efficient human-in-the-loop text-processing method 2017. ACM Interactions 24 (6): 44–49.CrossRefGoogle Scholar
  12. Kartoun, U. 2017b. Beyond brute force. Communications of the ACM 60 (10): 8–9.CrossRefGoogle Scholar
  13. Kartoun, U. 2018. Toward an equation that anticipates AI risks. Communications of the ACM 61 (2): 8–9.CrossRefGoogle Scholar
  14. Kartoun, U., V. Kumar, A. Brettman, S. Yu, K. Liao, E. Karlson, A. Ananthakrishnan, Z. Xia, V. Gainer, A. Cagan, S. Murphy, S. Churchill, I. Kohane, P. Szolovits, T. Cai, and S. Y. Shaw. 2015. A risk model for 30-day heart failure re-admission using electronic medical records. 2015 Joint Summits on Translational Science, San Francisco, CA.Google Scholar
  15. Kartoun, U., K. Corey, H. Zheng, and S. Shaw. 2016. A prediction model to assess mortality risk in cirrhosis. 2016 Joint Summits on Translational Science, San Francisco, CA.Google Scholar
  16. Kartoun, U., K. Corey, T. Simon, H. Zheng, R. Aggarwal, K. Ng, and S. Shaw. 2017. The MELD-Plus: A generalizable prediction risk score in cirrhosis. PLoS ONE 12 (10): e0186301.  https://doi.org/10.1371/journal.pone.0186301. (eCollection 2017).CrossRefGoogle Scholar
  17. Kartoun, U., R. Aggarwal, A. Beam, J. Pai, A. Chatterjee, T. Fitzgerald, I. Kohane, and S. Shaw. 2018. Development of an algorithm to identify patients with physician-documented insomnia. Scientific Reports 8: 7862.CrossRefGoogle Scholar
  18. Kim, W. R., S. W. Biggins, W. K. Kremers, R. H. Wiesner, P. S. Kamath, J. T. Benson, E. Edwards, and T. M. Therneau. 2008. Hyponatremia and mortality among patients on the liver-transplant waiting list. New England Journal of Medicine 359 (10): 1018–1026.CrossRefGoogle Scholar
  19. Liao, K. P., T. Cai, V. Gainer, S. Goryachev, Q. Zeng-treitler, S. Raychaudhuri, P. Szolovits, S. Churchill, S. Murphy, I. Kohane, E. W. Karlson, and R. M. Plenge. 2010. Electronic medical records for discovery research in rheumatoid arthritis. Arthritis Care & Research 62 (8): 1120–1127.CrossRefGoogle Scholar
  20. Londoño, M. C., A. Cárdenas, M. Guevara, L. Quintó, D. de Las Heras, M. Navasa, A. Rimola, J. C. Garcia-Valdecasas, V. Arroyo, and P. Ginès. 2007. MELD score and serum sodium in the prediction of survival of patients with cirrhosis awaiting liver transplantation. Gut 56 (9): 1283–1290.CrossRefGoogle Scholar
  21. Luca, A., B. Angermayr, G. Bertolini, F. Koenig, G. Vizzini, M. Ploner, M. Peck-Radosavljevic, B. Gridelli, and J. Bosch. 2007. An integrated MELD model including serum sodium and age improves the prediction of early mortality in patients with cirrhosis. Liver Transplantation 13 (8): 1174–1180.CrossRefGoogle Scholar
  22. Malinchoc, M., P. S. Kamath, F. D. Gordon, C. J. Peine, J. Rank, and P. C. ter Borg. 2000. A model to predict poor survival in patients undergoing transjugular intrahepatic portosystemic shunts. Hepatology 31 (4): 864–871.CrossRefGoogle Scholar
  23. Mehta, N., T. Singh, R. Lopez, and N. Alkhouri. 2016. The heart age is increased in patients with nonalcoholic fatty liver disease and correlates with fibrosis and hepatocyte ballooning. The American Journal of Gastroenterology 111 (12): 1853–1854.CrossRefGoogle Scholar
  24. Mulligan, D. C., and R. Hirose. 2014. OPTN/UNOS, Liver and Intestinal Organ Transplantation Committee. Report to the Board of Directors. June 23–24, 2014, Richmond, Virginia.Google Scholar
  25. Musso, G., R. Gambino, M. Cassader, and G. Pagano. 2011. Meta-analysis: Natural history of non-alcoholic fatty liver disease (NAFLD) and diagnostic accuracy of noninvasive tests for liver disease severity. Annals of Medicine 43: 617–649.CrossRefGoogle Scholar
  26. Ruf, A. E., W. K. Kremers, L. L. Chavez, V. I. Descalzi, L. G. Podesta, and F. G. Villamil. 2005. Addition of serum sodium into the MELD score predicts waiting list mortality better than MELD alone. Liver Transplantation 11 (3): 336–343.CrossRefGoogle Scholar
  27. Simon, T. G., U. Kartoun, H. Zheng, A. T. Chan, R. T. Chung, S. Shaw, and K. E. Corey. 2017. MELD-Na score predicts incident major cardiovascular events, in patients with nonalcoholic fatty liver disease. Hepatology Communications 1 (5): 429–438.CrossRefGoogle Scholar
  28. Tudoroiu, M. I., G. Constantin, L. Pâslaru, S. Iacob, C. Gheorghe, I. Popescu, D. Tomescu, and L. S. Gheorghe. 2018. The combination of serum cystatin C, urinary kidney injury molecule-1 and MELD-Plus score predicts early acute kidney injury after liver transplantation. Surgery, Gastroenterology and Oncology 23 (2): 121–126.CrossRefGoogle Scholar
  29. Uzuner, O., Y. Luo, and P. Szolovits. 2007. Evaluating the state-of-the-art in automatic de-identification. Journal of the American Medical Informatics Association 14 (5): 550–563.CrossRefGoogle Scholar
  30. Uzuner, O., I. Goldstein, Y. Luo, and I. Kohane. 2008. Identifying patient smoking status from medical discharge records. Journal of the American Medical Informatics Association 15 (1): 14–24.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Center for Computational HealthIBM ResearchCambridgeUSA

Personalised recommendations