Advertisement

Measurement Techniques

, Volume 62, Issue 9, pp 784–789 | Cite as

Fluorescent Nanosensors Based on Colloidal Quantum Dots for the Determination of Reduced Glutathione

  • M. K. AlenichevEmail author
  • A. A. Yushina
  • E. B. Drozhennikova
  • I. S. Filimonov
  • O. A. Baranova
  • A. V. Chekanov
  • A. D. Levin
NANOMETROLOGY
  • 6 Downloads

A fluorescent nanosensor based on colloidal quantum dots CdSe/ZnS modified with mercaptoacetic acid to determine reduced glutathione, a non-protein compound that plays an important role in protection against oxidative stress, is developed. Sample preparation protocols that allow determination of reduced glutathione in a wide range of concentrations are presented. Dependence of the fluorescence intensity of the system on the incubation time for a number of concentrations of reduced glutathione was measured. The possibility of using the proposed nanosensor for reliable and sensitive determination of reduced glutathione in the concentration range from 10 to 1000 μM is confirmed. The results can be used for quantitative determination of reduced glutathione in physiological media, which is of considerable interest for medical diagnostics.

Keywords

optical nanosensors quantum dots nanoparticles reduced glutathione disease markers medical diagnostics fluorescence 

References

  1. 1.
    L. Syedmoradi, M. Daneshpour, M. lvandipour, et al., “Point of care testing: The impact of nanotechnology,” Biosens. Bioelectr., 87, 373–387 (2017), DOI:  https://doi.org/10.1016/j.bios.2016.08.084.CrossRefGoogle Scholar
  2. 2.
    N. Hildebrandt, C. M. Spillmann, W. R. Algar, et al., “Energy transfer with semiconductor quantum dot bioconjugates: a versatile platform for biosensing, energy harvesting, and other developing applications,” Chem. Rev., 117, No. 2, 536–711 (2017), DOI:  https://doi.org/10.1021/acs.chemrev.6b00030.CrossRefGoogle Scholar
  3. 3.
    L. I. Kolesnikova, O. A. Vanteeva, N. A. Kurashova, and B. Ya. Vlasov, “Glutathione as an important component of the thiol disulfide system in the pathogenesis of infertility in overweight men,” Vestn. Ros. Akad. Med., 68, No. 7 (2013), DOI:  https://doi.org/10.15690/vramn.v68i7.705.CrossRefGoogle Scholar
  4. 4.
    D. M. Townsend, K. D. Tew, and H. Tapiero, “The importance of glutathione in human disease,” Biomed. Pharmacother., 57, No. 3–4, 145–155 (2003), DOI:  https://doi.org/10.1021/ja0203925.CrossRefGoogle Scholar
  5. 5.
    L. Flohe, Glutathione (oxidative stress and disease), CRC Press, N.Y (2018).Google Scholar
  6. 6.
    E. V. Dorozhko and E. I. Korotkova, “Study of antioxidant properties of biologically active sulfur-containing compounds by voltammetric and spectrophotometric methods,” Khim. Farm. Zh., 44, No. 10, 53–56 (2010), DOI:  https://doi.org/10.30906/0023-1134-2010-44-10-53-56.CrossRefGoogle Scholar
  7. 7.
    Y. Li, P. Wu, H. Xu, et al., “Anti-aggregation of gold nanoparticle-based colorimetric sensor for glutathione with excellent selectivity and sensitivity,” Analyst, 136, No. 1, 196–200 (2011), DOI:  https://doi.org/10.1039/c0an00452a.ADSCrossRefGoogle Scholar
  8. 8.
    Zhang N., Qu F., Luo H Q. , and Li N. B., “Sensitive and selective detection of biothiols based on target-induced agglomeration of silvernanoclusters,” Biosens. Bioelectr., 42, 214–218 (2013), DOI: / https://doi.org/10.1016/j.bios.2012.10.090.CrossRefGoogle Scholar
  9. 9.
    R. Deng, X. Xie, M. Vendrell, et al., “Intracellular glutathione detection using MnO2-nanosheetmodified upconversion nanoparticles,” J. Am. Chem. Soc., 133, No. 50, 20168–20171 (2011), DOI:  https://doi.org/10.1021/ja2100774.CrossRefGoogle Scholar
  10. 10.
    Mi Y., Lei X., Han H., et al., “A sensitive label-free FRET probe for glutathione based on CdSe/ZnS quantum dots and MnO2 nanosheets,” Analyt. Methods, 10, No. 34, 4170–4177 (2018), DOI:  https://doi.org/10.1039/C8AY01532E.CrossRefGoogle Scholar
  11. 11.
    J Pan, Z. Zheng, J. Yang, et al., “A novel and sensitive fluorescence sensor for glutathione detection by controlling the surface passivation degree of carbon quantum dots,” Talanta, 166, 1–7 (2017), DOI: 0.1016/j.talanta.2017.01.033.Google Scholar
  12. 12.
    J. Liu, C. Bao, X. Zhong, et al., “Highly selective detection of glutathione using a quantum-dot-based OFF–ON fluorescent probe,” Chem. Commun., 46, No. 17, 2971–2973 (2010), DOI:  https://doi.org/10.1039/B924299F.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. K. Alenichev
    • 1
    Email author
  • A. A. Yushina
    • 1
  • E. B. Drozhennikova
    • 1
  • I. S. Filimonov
    • 1
  • O. A. Baranova
    • 2
  • A. V. Chekanov
    • 2
  • A. D. Levin
    • 1
  1. 1.All-Russia Research Institute of Optophysical Measurements (VNIIOFI)MoscowRussia
  2. 2.Pirogov Russian National Research Medical UniversityMoscowRussia

Personalised recommendations