Measurement Techniques

, Volume 62, Issue 8, pp 681–685 | Cite as

Application of Atomic-Force Microscopy for Nanoindentation of the Surface Layer of Filled Polymer Films

  • T. R. Aslamazova
  • V. I. ZolotarevskiiEmail author
  • V. A. Kotenev
  • A. Yu. Tsivadze

The application of atomic-force microscopy for nanoindentation of the surface layer of films of acrylate polymers filled and unfilled with highly dispersed iron powder is examined. The effect of the elasticity of the polymer and of introducing a nanofiller on the nanohardness of the surface layer of the polymer is analyzed. It is shown that the nanohardness of the surface layer of both unfilled and filled polymer films increases as the elasticity of the polymer is reduced. A correlation is observed between an increase in hardness and a reduction in the elasticity of filled polymers.


polymer highly dispersed filler nanohardness surface distribution of hardness elasticity indenter force curves 


  1. 1.
    G. Piatti, Advances in the Area of Composite Materials, Metallurgiya, Moscow (1982).Google Scholar
  2. 2.
    A. A. Berlin and L. K. Pakhomova, “Polymer matrices for high-durability reinforced composites,” Vysokomol. Soed. Ser A,32, No. 7, 1154–1157 (1990).Google Scholar
  3. 3.
    M. L. Kerber, Polymer Composite Materials. Structure. Properties. Technologies, Professiya, St. Petersburg (2008).Google Scholar
  4. 4.
    A. D. Yakovlev, Chemistry and Technology of Paint and Varnish Coatings, Khimiya, Leningrad (1981).Google Scholar
  5. 5.
    E. S. Daniels, E. D. Sudol, and M. S. El-Aasser (eds.), Polymer Latexes: Preparation, Characterization, and Applications, ACS Symp. Ser. No. 492, Kluwer Academic Pub., N. Y. (1998).Google Scholar
  6. 6.
    T. R. Aslamazova, V. A. Kotenev, N. Yu. Lomovskaya, et al., “Effect of highly dispersed filler on the relaxation behavior of latex polymer,” Teor. Osn. Khim. Tekhnol., 53, No. 3, 1–5 (2019).Google Scholar
  7. 7.
    M. A. Petrunin, L. B. Maksaeva, T. A. Yurasova, et al., “Formation of silicon-organic self-organizing nanolayers on iron surfaces from the vapor phase and their influence on the corrosion behavior of the metal,” Fizikokhim. Pov. Zash. Mater., 51, No. 6, 1–7 (2015).Google Scholar
  8. 8.
    S. N. Parshev and N. Yu. Polozenko, Microhardness of Materials: Operating Instructions for Laboratory Work, VolgGTU, Volgograd (2004).Google Scholar
  9. 9.
    L. I. Mirkin, Physical Foundations of Durability and Plasticity, Izd. MGU, Moscow (1969).Google Scholar
  10. 10.
    V. I. Moshchenok, “Nanoindentation and the nanohardness of materials,” Avtom. Transp., 22, 151–154 (2008).Google Scholar
  11. 11.
    M. O. Galyanova and I. V. Yaminskii, Scanning Probe-Microscopy. Basic Principles. Analysis of Distorting Effects,, acc. May 29, 2019.
  12. 12.
    Z. V. Kostyashov (ed.), Natural and Artificial Resins – Some Aspects of Structure and Properties: Collection, Min. Kult. Kaliningrad. Oblasti, Kaliningrad (2013).Google Scholar
  13. 13.
    I. A. Voronov, “Nanohardness of the basis material Ftorak,” Ross. Stomatol. Zh., 20, No. 1, 4–6 (2016).Google Scholar
  14. 14.
    V. A. Lomovskoi, N. A. Abaturova, N. Yu. Lomovskaya, et al., “Relaxation phenomena in acetylcellulose,” Materialovedenie, No. 1, 29–35 (2010).Google Scholar
  15. 15.
    A. A. Valishin, A. A. Gorshkov, and V. A. Lomovskoi, “Defect of the elastic modulus of solid solutions of hydrogen in palladium,” Izv. RAN. Mekh. Tv. Tela, No. 2, 169–175 (2011).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • T. R. Aslamazova
    • 1
  • V. I. Zolotarevskii
    • 1
    Email author
  • V. A. Kotenev
    • 1
  • A. Yu. Tsivadze
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations