Advertisement

Measurement Techniques

, Volume 62, Issue 7, pp 608–614 | Cite as

Modular Multi-Turn Gear Angular Position Encoder

  • V. A. MozzhechkovEmail author
Article
  • 7 Downloads

A simplification of the mechanism of an absolute multi-turn gear angular position encoder is proposed. Movement on the input measuring shaft is transmitted in parallel to several driven shafts and single-turn sensors located on the shafts. In this case the reading of the encoder may be calculated using methods of modular arithmetic from the readings of single-turn sensors based on the values of the parameters that determine the gear ratios of the encoder mechanism.

Keywords

angle sensor encoder modular arithmetic Chinese remainder theorem methods of number theory 

References

  1. 1.
    V. Mozzhechkov and S. Kreskovsky, “Some trends of development of electric actuators,” Valve Word, 11, No. 8, 59–61 (2006).Google Scholar
  2. 2.
    A. Omondi and B. Premkumar, Residue Number Systems: Theory and Implementation, Imperial College Press, London (2007).Google Scholar
  3. 3.
    Yu. A. Grodetskiy, Yu. E. Dukarevich, Yu. N. Ivanov, and A. S. Sinitsyn, “A new generation of absolute precision angle sensors,” Izmer. Tekhn., No. 9, 22–25 (2012).Google Scholar
  4. 4.
    S. Das and B. Chakraborty, “Design of an absolute shaft encoder using optically modulated binary code,” IEEE Sens. J., 18, No. 12, 4902–4910 (2018).ADSCrossRefGoogle Scholar
  5. 5.
    T. Tran, H. X. Nguyen, J. W. Park, and J. W. Jeon, “Improving the accuracy of an absolute magnetic encoder by using harmonic rejection and a dual-phase-locked loop,” IEEE Trans. Indust. Electr., 66, No. 7, 5476–5486 (2019).CrossRefGoogle Scholar
  6. 6.
    T. S. Sarker and S. Das, “Absolute encoder-based dual axis tilt sensor,” IEEE Sens. J., 19, No. 7, 2774–2481 (2019).Google Scholar
  7. 7.
    R. Mattheis, D. Diegel, U. Hubner, and E. Halder, “Multiturn counter using the movement and storage of 180cirmagnetic domain walls,” IEEE Trans. Magnet., 42, No. 10, 3297–3299 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    M. Diegel, S. Glathe, R. Mattweis, et al., “A new four bit magnetic domain wall based multiturn counter,” IEEE Trans. Magnet., 45, No. 10, 3792–3795 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    F. Kohsaka, T. Iino, and Y. Kudou, “Revolution counter using magnetic bubble device for multi-turn absolute encoder,” Sens. Actuat. A: Phys., 22, No. 1–3, 803–806 (1990).CrossRefGoogle Scholar
  10. 10.
    H. Nakajima, K. Sumi, and H. Inujima, “High-precision absolute rotary angular measurement by using a multielectrode circular positive-sensitive detector,” IEEE Trans. Instrum. Measur., 59, No. 11, 3041–3048 (2010).CrossRefGoogle Scholar
  11. 11.
    K. Lee and J. Choi, “Shaft position measurement using dual absolute encoders,” Sens. Actuat. A: Phys., 238, 276–281 (2016).CrossRefGoogle Scholar
  12. 12.
    J. A. Kim, J. W. Kim, J. Jin, and T. Bong, “Absolute angle measurement using a phase-encoded binary graduated disk,” Measurement, 80, 288–293 (2015), DOI:  https://doi.org/10.1016/j.measurement.2015.11.037.CrossRefGoogle Scholar
  13. 13.
    C. Ding, D. Pei, and A. Salomaa, Chinese Remainder Theorem: Applications in Computing, Coding, Cryptography, World Scientific, New York (1996), pp. 1–213.Google Scholar
  14. 14.
    M. Kamarzarrin, S. E. Hosseini, M. Zavareh, and D. Kamarzarrin, “Designing and implementing of improved cryptographic algorithm using modular arithmetic theory,” J. Electr. Syst. Inform. Technol., 2, No. 1, 14–17 (2015).CrossRefGoogle Scholar
  15. 15.
    D. S. Phatak, and S. D. Houston, “New distributed algorithms for fast sign detection in residue number systems,” J. Parall. Distrib. Comp., 97, 78–95 (2016).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Privod Engineering CenterTulaRussia
  2. 2.Tula State UniversityTulaRussia

Personalised recommendations