Advertisement

Measurement Techniques

, Volume 62, Issue 6, pp 511–518 | Cite as

Adjustment of Phase Shift of Measurement Signals in an Optical Encoder from the Parameters of an Analyzing Scale

  • A. Yu. ZherdevEmail author
  • M. S. Kovalev
  • M. V. Shishova
  • S. B. Odinokov
  • D. S. Lushnikov
  • V. V. Markin
OPTOPHYSICAL MEASUREMENTS
  • 5 Downloads

Optical sensors of linear displacements with diffraction gratings serving as the measurement scales are investigated. A method of stabilization of the phase difference of quadrature measurement signals, consisting in the use of an analyzing scale with a special structure, is proposed. A design of an optical encoder based on the method is proposed. Mathematical simulation of the phase shift of the measurement signals as a function of the parameters of the diffraction grating is performed, and the results of the simulation are presented. The RCWA method is used to simulate the passage of radiation through the optical system. The optimal parameters of the structure of the analyzing scale are calculated. Experimental investigations of a mock-up of the encoder are performed and results of measurements of the phase difference of the measurement signals are presented.

Keywords

optical linear encoder linear displacement sensor measurement scale quadrature signals diffraction grating RCWA method 

References

  1. 1.
    R. Munnig Schmidt, “Ultra-precision engineering in lithographic exposure equipment for the semiconductor industry,” Philo. Trans. Roy. Soc. A, 370, 3950–3972 (2012), DOI:  https://doi.org/10.1098/rsta.2011.0054.ADSCrossRefGoogle Scholar
  2. 2.
    T. Oiwa, M. Katsuki, M. Karita, et al., “Questionnaire survey on ultra-precision positioning,” Int. J. Automat. Technol., 5, No. 6, 766–772 (2011), DOI:  https://doi.org/10.20965/ijat.2011.p0766.CrossRefGoogle Scholar
  3. 3.
    W. Gao, S. W. Kim, H. Bosse, et al., “Measurement technologies for precision positioning,” CIRP Ann.: Manuf. Technol., 64, No. 2, 773–796 (2015), DOI:  https://doi.org/10.1016/j.cirp.2015.05.009.CrossRefGoogle Scholar
  4. 4.
    J. Rozman and A. Pleterek, “Linear optical encoder system with sinusoidal signal distortion below –60 db,” IEEE Trans. Instrum. Measur., 59, No. 6, DOI:  https://doi.org/10.1109/TIM.2009.2027774.CrossRefGoogle Scholar
  5. 5.
    G. Ye, H. Liu, Y. Shi, et al., “Optimizing design of an optical encoder based on generalized grating imaging,” Measur. Sci. Technol., 27, No. 11, 115005 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    X. Li, L. Yin, Y. Shi, et al., “Analysis of signal distortion caused by opening ratio variation of main scale and index scale in linear encoder,” Adv. Mater. Res., 712715, 1833–1837 (2013), DOI: https://doi.org/10.4028/www.scientific.net/AMR.712–715.1833.Google Scholar
  7. 7.
    A. Teimel, “Technology and applications of grating interferometers in high-precision measurement,” Prec. Eng., 14, No. 4 (1992), DOI:  https://doi.org/10.1016/0141-6359(92)90003-F.CrossRefGoogle Scholar
  8. 8.
    X. Li, Y. Shimizu, S. Ito, and W. Gao, “Fabrication of scale grating for surface encoders by using laser interference lithography with 405 nm laser diodes,” Int. J. Prec. Eng. Manuf., 14, No. 11, 1979–1988 (2013), DOI:  https://doi.org/10.1007/s12541-013-02696.CrossRefGoogle Scholar
  9. 9.
    S. Fan, Y. Shi, L. Yin, et al., “A study on the fabrication of main scale of linear encoder using continuous roller imprint method,” SPIE Proc., 8916, 3W (2013), DOI:  https://doi.org/10.1117/12.2035762.CrossRefGoogle Scholar
  10. 10.
    Y. Glaser, “High-end spectroscopic diffraction gratings: design and manufacturing,” Adv. Opt. Technol., 4, No. 1, 25–46 (2015), DOI:  https://doi.org/10.1515/aot-2014-0063.ADSCrossRefGoogle Scholar
  11. 11.
    M. V. Shishova, A. Y. Zherdev, S. B. Odinokov, and D. S. Lushnikov, “Lithographic diffraction grating with a period failure,” Opt. Micro- and Nanometrol.,VII: SPIE Conf. Proc., 10679, 106780E (2018), DOI: 10.1117/12.2306811.Google Scholar
  12. 12.
    A. Y. Zherdev, S. B. Odinokov, D. S. Lushnikov, et al., “Halography: Advances and modern trends V,” SPIE Conf. Proc., 10233, 1023311 (2017), DOI 10:1117/12.2264801.Google Scholar
  13. 13.
    D. S. Lushnikov, A. Y. Zherdev, S. B. Odinokov, et al., “The small-sized ultraprecision sensor for measuring linear displacements,” Opt. Measur. Syst. for Industr. Inspect. X: SPIE Conf. Proc., 10329, 103293E (2017), DOI:  https://doi.org/10.1117/12.2269712.CrossRefGoogle Scholar
  14. 14.
    A. Y. Zherdev, S. B. Odinokov, M. S. Kovalev, et al., “Optical position encoder based on four-section diffraction grating,” Opt. Sens. Detect. V: SPIE Conf. Proc., 10680, 106802K (2018), DOI:  https://doi.org/10.1117/12.2304939.CrossRefGoogle Scholar
  15. 15.
    M. V. Shishova, S. B. Odinokov, D. S. Lushnikov, et al., “Mathematical modeling of signal transfer processes into linear displacement encoder optical system,” Procedia Eng., 201, 623–629 (2017), DOI:  https://doi.org/10.1016/j.proeng.2017.09.676.CrossRefGoogle Scholar
  16. 16.
    G. Ye, S. Fan, H. Liu, et al., “Design of a precise and robust linearized converter for optical encoders using a ratiometric technique,” Measur. Sci. Technol., 25, No. 12, p. 125003 (2014), DOI:  https://doi.org/10.1088/0957-0233/25/12/125003.ADSCrossRefGoogle Scholar
  17. 17.
    J. Chandezon, D. Maystre, and G. Raoult, “A new theoretical method for diffraction gratings and its numerical application,” J. Optics, 11, 235–241 (1980).ADSCrossRefGoogle Scholar
  18. 18.
    M. G. Moharam and G. T. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Amer., 72, 1385 (1982), DOI:  https://doi.org/10.1364/JOSA.72.001385.ADSCrossRefGoogle Scholar
  19. 19.
    A. Y. Zherdev, S. B. Odinokov, D. S. Lushnikov, et al., “Plasmonic spectral filters based on diffraction gratings,” Holography: Adv. and Modern Trends IV: SPIE Conf. Proc., 9508, 950805 (2015), DOI:  https://doi.org/10.1117/12.2178677.CrossRefGoogle Scholar
  20. 20.
    M. V. Shishova, S. B. Odinokov, D. S. Lushnikov, and A. Y. Zherdev, “Methods for analyzing quality of diffraction gratings for linear-displacement sensors,” J. Opt. Technol.85, No. 7, 396–400 (2018), DOI:  https://doi.org/10.1364/JOT.85.000396.CrossRefGoogle Scholar
  21. 21.
    V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, et al., “Magnetooptical effects in the metal-dielectric gratings,” Opt. Communs., 278, 104–109 (2007), DOI:  https://doi.org/10.1016/j.optcom.2007.05.064.ADSCrossRefGoogle Scholar
  22. 22.
    E. A. Bezus and L. L. Doskolovich, “Stable algorithm for the computation of the electromagnetic field distribution of eigenmodes of periodic diffraction structures,” J. Opt. Soc. Amer., 29, 2307–2313 (2012), DOI:  https://doi.org/10.1364/JOSAA.29.002307.ADSCrossRefGoogle Scholar
  23. 23.
    D. A. Bykov and L. L. Doskolovich, “Numerical methods for calculating poles of the scattering matrix with applications in grating theory,” J. Lightwave Technol., 31, 793–801 (2013).ADSCrossRefGoogle Scholar
  24. 24.
    D. A. Bykov, E. A. Bezus, and L. L. Doskolovich, “Use of aperiodic Fourier modal method for calculating complexfrequency eigenmodes of long-period photonic crystal slabs,” Opt. Express, 25, 27298–27309 (2017), DOI:  https://doi.org/10.1364/OE.25.027298.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. Yu. Zherdev
    • 1
    Email author
  • M. S. Kovalev
    • 1
  • M. V. Shishova
    • 1
  • S. B. Odinokov
    • 1
  • D. S. Lushnikov
    • 1
  • V. V. Markin
    • 1
  1. 1.Bauman Moscow State Technical University (BMSTU)MoscowRussia

Personalised recommendations