Measurement Techniques

, Volume 61, Issue 12, pp 1153–1158 | Cite as

Development and Analysis of Algorithmically-Controlled Adaptive Analog Filters as Components in Information and Measurement Systems

  • M. P. Kozochkin
  • A. R. Maslov
  • A. N. PorvatovEmail author

This paper describes a measurement-circuit design approach based on switched-capacitor filters, and an analog vibroacoustic signal-matching-and-conversion device. We also develop an adaptive control algorithm for measurement-circuit parameters, and find that analog matching devices can be used advantageously for and monitoring and diagnostics of process status in industrial equipment.


adaptive filtering measurement systems vibration diagnostics vibroacoustic signal switchedcapacitor filters programmable-gain amplifier 


  1. 1.
    M. P. Kozochkin, A. R. Maslov, and A. N. Porvatov, “Information-measurement and control systems for force and vibroacoustic parameters,” Izmer. Tekhn., No. 8, 5–9 (2015).Google Scholar
  2. 2.
    М. Serridge, “Fault detection techniques for reliable machine condition monitoring,” Sound and Vibration, No. 23(5), 18–22 (1989).Google Scholar
  3. 3.
    B. Liu and S.-F. Ling, “On the selection of informative wavelets for machinery diagnosis,” Mech. Syst. Signal Proc., 13, No 11(3), 145–162 (1999).Google Scholar
  4. 4.
    A. N. Porvatov, “An approach to the development of an information system for diagnostics of lathe equipment with the use of simulation modeling,” Metrologiya, No. 5, 22–28 (2011).Google Scholar
  5. 5.
    H. Y.-F. Lam, Analog and Digital Filters: Design and Realization [Russian translation], Mir, Moscow (1982).Google Scholar
  6. 6.
    S. Haykin, Adaptive Filter Theory, Prentice Hall, Upper Saddle River, NJ (2001), 4th ed.zbMATHGoogle Scholar
  7. 7.
    C. F. N. Cowan and P. M. Grant, Adaptive Filters [Russian translation], Mir, Moscow (1988).Google Scholar
  8. 8.
    B. Widrow and S. D. Stearns, Adaptive Signal Processing [Russian translation], Radio i Svyaz, Moscow (1989).zbMATHGoogle Scholar
  9. 9.
    J. Benesty and Y. Huang, Adaptive Signal Processing: Applications to Real-World Problems, Springer-Verlag, Berlin–Heidelberg–New York (2003).CrossRefzbMATHGoogle Scholar
  10. 10.
    MAXIM Corporation, MAX262 Microprocessor Programmable Universal Active Filters,, acc. May 29, 2018.
  11. 11.
    Texas Instruments, Programmable Gain Instrumentation Amplifier,, acc. May 29, 2018.
  12. 12.
    Q. Yongqian and S. Junjie, “Implementation of vibration signals’ tracking anti-aliasing filtering,” Modern Manuf. Eng., No. 2, 86–88 (2006).Google Scholar
  13. 13.
    Μ. P. Kozochkin, A. P. Maslov, and A. N. Porvatov, “Estimating dynamic stiffness of a micro-milling machine,” Vest. MGTU Stankin, No. 2(25), 12–16 (2013).Google Scholar
  14. 14.
    A. R. Maslov, Μ. P. Kozochkin, and A. N. Porvatov, Patent 113030 RF, “Adaptive process control system for controlling the cutting process on a metal cutting machine,” publ. July 28, 2011, Izobret. Polezn. Modeli, No. 3 (2011).Google Scholar
  15. 15.
    Μ. P. Kozochkin and A. N. Porvatov, “Estimation of uncertainty in solving multi-parameter diagnostic problems,” Izmer. Tekhn., No. 2, 41–45 (2015).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. P. Kozochkin
    • 1
  • A. R. Maslov
    • 1
  • A. N. Porvatov
    • 1
    Email author
  1. 1.STANKIN Moscow State Technological UniversityMoscowRussia

Personalised recommendations