Advertisement

Measurement Techniques

, Volume 61, Issue 9, pp 897–902 | Cite as

Metrological Analysis of an Optoelectronic Monitoring System for Profilograms of Shells of Rotation

  • A. N. Shilin
  • D. G. Snitsaruk
Article
  • 4 Downloads

Metrological analysis of optoelectronic monitoring systems for profilograms of shells of rotation was conducted. The optoelectronic systems that execute various methods for searching for the center of a part are examined. A mathematical model of a shell of rotation specified by the profilogram is considered. The dependence of absolute methodological error on this coefficient is derived from the modeling results, and conclusions are drawn regarding the feasibility of applying one or another system, depending on the required accuracy and speed.

Keywords

shell of rotation method of center of gravity search geometric parameters spectral analysis monitoring system profilogram 

Notes

The article presents the results of studies performed using the Erasmus+ program No. 573879-EPP-1-2016-1-FREPPKA2-CBHE-JP, “Internationalization of Master Programs in Russia and China in Electrical Engineering.”

References

  1. 1.
    A. D. Nikiforov, Interchangeability, Standardization, and Technical Measurements, Vysshaya Shkola, Moscow (2000).Google Scholar
  2. 2.
    N. N. Markov, “The chief objectives of the development and the problems of automation of the measurement of linear and angular dimensions in mechanical engineering,” in Mechanization and Automation of Linear and Angular Measurements: Seminar Proc., MDNTP, Moscow (1985).Google Scholar
  3. 3.
    V. B. Sharapov and Yu. L. Paraunin, Patent 2142111 RF, IPC G01B5/20, IPC G01B5/28, “A device to measure the roughness of the internal surface of a cylindrical shell,” Izobreteniya, No. 33 (1999).Google Scholar
  4. 4.
    A. S. Pavlyuk, M. I. Semenov, and S. A. Pavlyuk, Patent 28700 RF, IPC E01C 23/07/G01C 7/04, “A device for taking profilograms of surfaces,” Izobreteniya, No. 10 (1999).Google Scholar
  5. 5.
    A. D. Nikiforov, Precision in Chemical Facilities Building, Mashinostroenie, Moscow (1969).Google Scholar
  6. 6.
    Yu. S. Sysoev, “Coordinate methods of determining average-circle parameters in actual surface profile analysis,” Izmer. Tekhn., No. 10, 22–25 (1995).Google Scholar
  7. 7.
    A. N. Shilin and M. V. Girkin, “Analysis of algorithms of an optoelectronic system for monitoring the curvature of the profile of shells,” Pribory, 5, 51–57 (2009).Google Scholar
  8. 8.
    A. N. Shilin, “Analysis of methods and setups for measurement of the geometrical parameters of shells during their fabrication,” Prib. Sist. Upravl., Kontrol, Diagn., No. 8, 24–28 (2002).Google Scholar
  9. 9.
    N. A. Shilin and D. G. Snitsaruk, “Optoelectronic system for monitoring profilograms of the internal surfaces of shells,” Izv. VolgGTU. Ser. Elektron., Izmer. Tekh., Radiotekh. Svjaz, Iss. 12, No. 11 (176), 74–79, Volgograd (2015).Google Scholar
  10. 10.
    S. M. Targ, “Center of inertia (center of masses),” in Physical Encyclopedia, A. M. Prokhorov (ed.), Great Russian Encyclopedia, Vol. 5, Stroboscopic Devices. Brightness, Nauka, Moscow (1999).Google Scholar
  11. 11.
    D. G. Snitsaruk and A. N. Shilin, Patent 159150 RF, IPC G01B11/00, “Optoelectronic device for measurement of the dimensions of shells,” Izobret. Polezn. Modeli, No. 16 (2016).Google Scholar
  12. 12.
    A. N. Shilin, D. G. Snitsaruk, and A. A. Stepanov, “Optoelectronic remote measurement device for monitoring the profilograms of shells,” Energo- Resursosber.: Prom. Transp., No. 2 (19), 53–57 (2017).Google Scholar
  13. 13.
    A. N. Shilin and D. G. Snitsaruk, “An optical device to control deviations of the diameters of large shells of rotation,” in Applied Optics – 2016: Proc. XII Int. Conf., Vol. 2, Optoelectronic Devices for Industry and Medicine. Metrology and Workstations. Digital Information Processing and Graphics, St. Petersburg (2016), p. 218.Google Scholar
  14. 14.
    S. A. Petrov and A. N. Shilin, Patent 2426067 RF, IPC G 01 B 5/00, “Method of measuring the geometrical parameters of a shell of rotation,” Izobret. Polezn. Modeli, No. 22 (2011).Google Scholar
  15. 15.
    A. N. Shilin and S. A. Petrov, “Determining the centers of the profilograms of shells during assembly of casings of oil production machinery,” Sborka Mashinostr. Pribostr., No. 9, 15–19 (2010).Google Scholar
  16. 16.
    L. K. Sizenov, “Summation of errors of size and form in the transverse section of cylindrical parts,” Izv. VUZ. Priborostr., No. 11, 134–138 (1969).Google Scholar
  17. 17.
    OST 26291-94, Vessels and Equipment, Izd. VNIINEFTEMASh, Moscow (1994).Google Scholar
  18. 18.
    I . D. Gebel, “Centerless measurement of profile shape of bodies of rotation,” Izmer. Tekhn., No. 3, 24–27 (1973).Google Scholar
  19. 19.
    I. S. Gruzman, Digital Image Processing in Information Systems, Izd. NGTU, Novosibirsk (2002).Google Scholar
  20. 20.
    D. Bradley and G. Roth, “Adaptive thresholding using the integral image,” ACM J. Graph. Tools, 12, No. 2, 13–21 (2007).CrossRefGoogle Scholar
  21. 21.
    A. I. Yakushev, L. N. Vorontsov, and N. M. Fedotov, Interchangeability, Standardization, and Technical Measurements, Mashinostroenie, Moscow (1986), 6th ed.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Volgograd State Technical UniversityVolgogradRussia

Personalised recommendations