Advertisement

Measurement Techniques

, Volume 61, Issue 8, pp 774–778 | Cite as

A Modem with a Fiber-Optic Communication Line for Dissemination of Frequency and Time Reference Signals

  • A. V. Zheglov
  • A. A. Belyaev
  • S. Yu. Medvedev
  • I. A. Pisarev
Article
  • 14 Downloads

The features of a multichannel modem that has been developed for transmission of frequency and time reference signals on a fiber-optic communication line with phase instability compensation are examined. Its capabilities for transmitting signals of reference frequencies of active hydrogen masers (such as the Ch1-1003M), we well as a 1 PPS signal with an error of synchronization no greater than 250 psec over 100 km without the use of optical amplifiers are assessed. The results of experimental verification of the metrological characteristics of the modem are given.

Keywords

frequency and time signaling fiber-optic communication line 

References

  1. 1.
    S. Huang and R. L. Tjoelker, “Stabilized photonic links for deep space tracking, navigation, and radio science applications,” Proc. 43rd Ann. Precise Time and Time Interval Systems and Applications Meeting (2012), pp. 1–8.Google Scholar
  2. 2.
    G. Santarelli, F. Narbonneau, M. Lours, D. Chambon, S. Bise, A. Clairon, Ch. Daussy, O. Lopez, and M. Y. Tobar, “High performance frequency dissemination for metrology applications with optical fibers,” Proc. IEEE Int.. Freq. Control Symp. Expo. (2005), p. 185.Google Scholar
  3. 3.
    D. Piester, M. Rost, M. Fujieda, T. Feldmann, and A. Bauch, “Remote atomic clock synchronization via satellites and optical fibers,” Adv. Radio Sci., 9, 1–7 (2011), DOI:  https://doi.org/10.5194/ars-9-1-2011.ADSCrossRefGoogle Scholar
  4. 4.
    S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum., 78 (021101), 1–25 (2007), DOI:  https://doi.org/10.1063/1.2437069.CrossRefGoogle Scholar
  5. 5.
    M. Fujieda, M. Kumagai, T. Gotoh, and M. Hosokawa, “Ultrastable frequency dissemination via optical fiber at NICT,” IEEE T. Instrum. Meas., 58, 1223–1228 (2009).CrossRefGoogle Scholar
  6. 6.
    D. M. Fedorova, R. I. Balayev, A. F. Kurchatov, V. I. Troyan, and A. N. Malimon, “Dissemination of reference radio frequencies over fiber-optic lines with electronic compensation of perturbations,” Izmer. Tekhn., No. 9, 34–37 (2015).Google Scholar
  7. 7.
    R. I. Balayev, D. M. Shibayeva, A. N. Malimon, and A. F. Kurchanov, “Characteristics of phase-stable coaxial and optical cables used for transmission of information regarding time and frequency standards,” Alm. Sovrem. Metrol., No. 2, 165–197 (2015).Google Scholar
  8. 8.
    K. Yu. Khabarova, E. S. Kalganova, and N. N. Kolachevskii, “Transmission of precise frequency and time signals in the optical range,” UFN, 188, No. 2, 221–230 (2018).CrossRefGoogle Scholar
  9. 9.
    P. O. Hedekvist and S. Ch. Ebenhag, “Time and frequency transfer in optical fibers,” Recent Progr. Opt. Fiber Res., 372–386 (2012).Google Scholar
  10. 10.
    O. Lopez, A. Amy-Klein, Ch. Daussy, C. Chardonnet, F. Narbonneau, M. Lours, and G. Santarelli, “86-km optical link with a resolution of 2·10–18 for RF frequency transfer,” Eur. Rhys. J. D, 48, 35–41 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    J. Kodet, P. Pánek, and I. Procházkaet, “Two-way time transfer via optical fiber providing subpicosecond precision and high temperature stability,” Metrologia. 53, 18–26 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. V. Zheglov
    • 1
  • A. A. Belyaev
    • 1
  • S. Yu. Medvedev
    • 1
  • I. A. Pisarev
    • 1
  1. 1.Vremya-Ch CompanyNizhnii NovgorodRussia

Personalised recommendations