Advertisement

Measurement Techniques

, Volume 61, Issue 8, pp 760–766 | Cite as

Determination of Number Density of Particles Together with Measurement of Their Sizes by Dynamic Light Scattering

  • A. D. Levin
  • A. I. Nagaev
  • A. Yu. Sadagov
NANOMETROLOGY

A method is proposed for measuring the size of particles in a dynamic light scattering analyzer along with a determination of their number density in suspension. It is shown that this method can be used to measure the parameters of various nanoparticles, including nonspherical ones. An experimental prototype of a dynamic light scattering analyzer for measuring the number density of nanoparticles along with their sizes is described.

Keywords

number density nanoparticles dynamic light scattering extinction 

References

  1. 1.
    A. H. Puthusserickal, R. Suman, and V. Gunjan, “Making sense of Brownian motion: colloid characterization by dynamic light scattering,” Langmuir, 31, 3–12 (2015).Google Scholar
  2. 2.
    V. M. Shmidt, Optical Spectroscopy for Chemists and Biologists, Tekhnosfera, Moscow (2007).Google Scholar
  3. 3.
    W. Haiss, N. T. K. Thanh, J. Aveyard, and D. G. Fernig, “Determination of size and concentration of gold nanoparticles from UV-Vis spectra,” Analyt. Chem., 79, 4215–4221 (2007).Google Scholar
  4. 4.
    N. G. Khlebtsov, “Determination of size and concentration of gold nanoparticles from extinction spectra,” Analyt. Chem., 80, 6620–6625 (2008).Google Scholar
  5. 5.
    D. Parmelle, A. Sadovoy, S. Gorelik, P. Free, J. Hobley, and D. G. Fernig, “A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra,” The Analyst, 139, 4855–4861 (2014).Google Scholar
  6. 6.
    M. Quinten, Optical Properties of Nanoparticle Systems: Mie and Beyond, John Wiley & Sons, NY (2010).Google Scholar
  7. 7.
    T. Hendel, M. Wuithschick, F. Kettemann, A. Birnbaum, K. Rademann, and J Polte, “In situ determination of colloidal gold concentrations with UV-Vis spectroscopy: limitations and perspectives,” Analyt. Chem., 86, 11114–11124 (2014).Google Scholar
  8. 8.
    P. D. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev. D, No. 3, 825–839 (1970).Google Scholar
  9. 9.
    C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley Interscience, New York (1983).Google Scholar
  10. 10.
    C. Matzler, Matlab Codes for Mie Scattering and Absorption, Institut für Angewandte Physik, Bern (2002).Google Scholar
  11. 11.
    Refractive Index Database, www.refractiveindex.info, acc. March 20, 2018.
  12. 12.
    B. N. Khlebtsov, V. A. Khanadeev, and N. G. Khlebtsov, “Determination of the size, concentration, and refractive index of silicon dioxide nanoparticles by spectroturbidimetry,” Opt. Spektrosk., 105, No. 5, 801–808 (2008).CrossRefGoogle Scholar
  13. 13.
    M. Glidden and M. Martin, “Characterizing gold nanorods in solution using depolarized dynamic light scattering,” J. Phys. Chem. C, 116, 8128–8137 (2012).Google Scholar
  14. 14.
    A. D. Levin, E. A. Shmytkova, and B. N. Khlebtsov, “Multipolarization dynamic light scattering of nonspherical nanoparticles in solution,” J. Phys. Chem. C, 121, 3070–3077 (2017).Google Scholar
  15. 15.
    S. Asano, and G. Yamamoto, “Light scattering by a spheroidal particle,” Appl. Optics, 14, 29–49 (1975).Google Scholar
  16. 16.
    N. F. Khlebtsov, “T-matrix method in plasmonics – An overview,” J. Quant. Spectrosc. Radiat. Transf., 123, 184–217 (2013).Google Scholar
  17. 17.
    W. R. Somerville, B. Auguié, and E. D. Le Ru, “User-friendly codes for fast and accurate calculations of light scattering by spheroids,” J. Quant. Spectrosc. Radiat.Transf., 174, 39–55 (2016).Google Scholar
  18. 18.
    P. Johnson and R. Christy, “Optical constants of noble metals,” Phys. Rev. B, 6, No. 12, 4370–4379 (1972).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.All-Russia Research Institute of Optophysical Measurements (VNIIOFI)MoscowRussia

Personalised recommendations