Measurement Techniques

, Volume 60, Issue 2, pp 183–189 | Cite as

Compact Multifunction Nuclear-Magnetic Spectrometer

  • V. V. DavydovEmail author
  • N. S. Myazin

A compact nuclear-magnetic spectrometer is examined in which the design takes account of the special features of registration in the weak magnetic field of the NMR signal of a compact condensed medium. A table of characteristics of the nuclei most often used in nuclear-magnetic spectroscopy is compiled. The results of experimental studies of the condensed media are presented.


nuclear magnetic resonance condensed medium magnetic field periods of longitudinal T1 and transverse Т2 relaxations signal-to-noise 


  1. 1.
    E. M. Alashkin, B. I. Gizatullin, M. Yu. Zakharov, et al., “Proton NMR of aqueous solutions of nanodimensional crystal particles of LaF3 and LaF3Gd3+,” Fiz. Nizk. Temp., 41, No. 1, 86–89 (2015).Google Scholar
  2. 2.
    A. Yu. Karseev, V. A. Vologdin, and V. V. Davydov, “Feature of NMR signal registration in weak magnetic fields for the express-control of biological solutions and liquid medium by nuclear-magnetic spectroscopy method,” J. Phys. Conf. Ser., 643, No. 1, 012108 (2015).CrossRefGoogle Scholar
  3. 3.
    V. V. Davydov, A. V. Cheremiskina, E. N. Velichko, and A. Yu. Karseev, “Express-control of biological solution by portable nuclear-magnetic spectrometer,” J. Phys. Conf. Ser., 541, No. 1, 012006 (2014).CrossRefGoogle Scholar
  4. 4.
    V. V. Davydov, V. I. Dudkin, and A. Yu. Karseev, “Small-scale nuclear-magnetic relaxometer for express control of the status of liquid and viscous mediums,” Izmer. Tekhn., No. 8, 44–48 (2014).Google Scholar
  5. 5.
    A. I. Zhernovoi and S. V. D’yachenko, “An express method of measurement of magnetic saturation and the magnetic moment of nanoparticles in magnetic liquid by means of NMR,” Izv. SPbTI (TU), No. 20 (46), 12–13 (2013).Google Scholar
  6. 6.
    V. V. Davydov, E. N. Velichko, V. I. Dudkin, and A. Yu. Karseev, “Nuclear-magnetic relaxometer for express control of the status of condensed mediums,” Prib. Tekhn. Eksper., No. 2, 72–76 (2015).Google Scholar
  7. 7.
    Y. Erdogru, D. Manimaran, M. T. Gulluolu, et al., “FT-IR, FT-RAMAN, NMR spectra and DFT simulations of 4-(4-fluorophenyl)-1H-imidazole,” Opt. Spektrosk., 113, No. 4, 573–584 (2013).Google Scholar
  8. 8.
    V. V. Davydov and S. V. Ermak, “A quantum spectroanalyzer of radio-optical resonance,” Prib. Tekhn. Eksper., No. 2, 92–95 (2001).Google Scholar
  9. 9.
    V. A. Ryzhov, I. V. Pleshakov, A. A. Nechitailov, et al., “Magnetic study of nanostructural composite material based on cobalt compounds and porous silicon,” Appl. Magn. Reson., 45, No. 4, 339–352 (2014).CrossRefGoogle Scholar
  10. 10.
    A. Leshe, Nuclear Induction [Russian translation], Inostrannaya Literatura, Moscow (1963).Google Scholar
  11. 11.
    G. Chiarotti, G. Cristiani, and L. Giulotto, “Proton relaxation in water,” Phys. Rev., 93, 1241–1249 (1954).ADSCrossRefGoogle Scholar
  12. 12.
    L. S. Podenko, A. N. Nesterov, N. S. Komissarova, et al., “Proton magnetic relaxation in a dispersive nanosystem of ‘dry water’,” Zh. Prikl. Spektrosk., 78, No. 2, 282–287 (2011).Google Scholar
  13. 13.
    L. S. Goodmen, “New constructions for magnetic systems,” Rev. Sci. Instrum., 31, 1351–1355 (1960).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  2. 2.Bonch-Bruevich St. Petersburg State University of TelecommunicationsSt. PetersburgRussia
  3. 3.All-Russia Research Institute of PhytopathologyBolshie VyazemyRussia

Personalised recommendations