Measurement Techniques

, Volume 59, Issue 10, pp 1065–1072 | Cite as

Express Measurement of the Permeability of Solvents Through Nanoporous Membrane Materials and Barrier Films by Detection of Dynamic Pressure Reductions

  • Yu. S. Eremin
  • A. A. Belogorlov
  • A. M. Grekhov
  • A. V. Volkov
Article
  • 66 Downloads

A method and experimental setup for measuring the permeability of membrane and film materials has been developed. This method is based on determining the kinetics of the pressure change in a liquid above a membrane. The permeability of solvents through a glassy polymer is studied over wide ranges of temperature and pressure. This method and the associated apparatus can be used to determine the permeability of solvents through membrane materials with high accuracy for both convective and diffusive liquid transport.

Keywords

membrane permeability convective flow solvent diffusion 

References

  1. 1.
    A. V. Volkov, G. A. Korneeva, and G. F. Tereshchenko, “Nanofiltration of organic media: prospects and areas of application,” Usp. Khimii, 77, 1053–1064 (2008).Google Scholar
  2. 2.
    D. Bhanushali, S. Kloos, C. Kurth, and D. Bhattacharyya, “Performance of solvent-resistant membranes for non-aqueous systems: solvent permeation results and modeling,” J. Membr. Sci., 189, 1–21 (2001).CrossRefGoogle Scholar
  3. 3.
    J. P. Robinson, E. S. Tarleton, C. R. Millington, and A. Niemeijer, “Solvent flux through dense polymeric nanofiltration membranes,” J. Membr. Sci., 230, 29–37 (2004).CrossRefGoogle Scholar
  4. 4.
    A. Yushkin, A. Grekhov, S. Matson, et al., “Study of glassy polymers fractional accessible volume (FAV) by extended method of hydrostatic weighing: Effect of porous structure on liquid transport,” React. Funct. Polym., 86, 269–281 (2015).CrossRefGoogle Scholar
  5. 5.
    P. Vandezande, L. E. M. Gevers, and I. F. J. Vankelecom, “Solvent resistant nanofiltration: separating on a molecular level,” Chem. Soc. Rev., 37, 365–405 (2008).CrossRefGoogle Scholar
  6. 6.
    Y. H. See Toh, X. X. Loh, K. Li, A. Bismarck, and A. G. Livingston, “In search of a standard method for the characterisation of organic solvent nanofiltration membranes,” J. Membr. Sci., 291, 120–125 (2007).CrossRefGoogle Scholar
  7. 7.
    Y. Zhao and Q. Yuan, “A comparison of nanofiltration with aqueous and organic solvents,” J. Membr. Sci., 279, 453–458 (2006).CrossRefGoogle Scholar
  8. 8.
    I. F. J. Vankelecom, K. De Smet, L. E. M. Gevers, et al., “Physicochemical interpretation of the SRNF transport mechanism for solvents through dense silicone membranes,” J. Membr. Sci., 231, 99–108 (2004).CrossRefGoogle Scholar
  9. 9.
    A. Grekhov, A. Belogorlov, A. Yushkin, and A. Volkov, “New express dynamic technique for liquid permeation measurements in a wide range of trans-membrane pressures,” J. Memb. Sci., 390–391, 160–163 (2012).CrossRefGoogle Scholar
  10. 10.
    M. Das and W. J. Koros, “Performance of 6FDA-6FpDA polyimide for propylene/propane separations,” J. Membr. Sci., 365, 399–408 (2010).CrossRefGoogle Scholar
  11. 11.
    A. V. Volkov, V. V. Volkov, and V. S. Khotimskii, “Membranes based on poly[(l-trimethylsilyl)-l-propyne] for separation of liquids,” Vysokomolek. Soed., 51, No. 11, 2113–2128 (2009).Google Scholar
  12. 12.
    P. Vandezande, L. E. M. Gevers, and I. F. J. Vankelecom, “Solvent resistant nanofiltration: separating on a molecular level,” Chem. Soc. Rev., 37, 365–405 (2008).CrossRefGoogle Scholar
  13. 13.
    A. Volkov, A. Yushkin, A. Grekhov, et al., “Liquid permeation through PTMSP: One polymer for two different membrane applications,” J. Membr. Sci., 440, 98–107 (2013).CrossRefGoogle Scholar
  14. 14.
    P. Silva, S. Han, and A. G. Livingston, “Solvent transport in organic solvent nanofiltration membranes,” J. Membr. Sci., 262, 45–49 (2005).CrossRefGoogle Scholar
  15. 15.
    N. C. Mueller, B. van der Bruggen, V. Keuter, et al., “Nanofiltration and nanostructured membranes – Should they be considered nanotechnology or not,” J. Hazard. Mater., 211–212, 275–280 (2012).CrossRefGoogle Scholar
  16. 16.
    A. A. Ravdelya and A. M. Ponomareva, A Short Handbook of Physical and Chemical Quantities, Khimiya, Leningrad (1983), pp. 112–113.Google Scholar
  17. 17.
    W. M. Haynes, D. R. Lide, and T. J. Bruno, Handbook of Chemistry and Physics: A Ready Reference Book of Chemical and Physical Data, CRC, Boca Raton (2012).Google Scholar
  18. 18.
    A. M. Grekhov, A. A. Yushkin, S. E. Tsar’kov, et al., “Modern models of nanofiltration processes for organic solvents,” Membrany, No. 3(47), 18–40 (2010).Google Scholar
  19. 19.
    W. Stiller, The Arrhenius Equation and Nonequilibrium Kinetics [Russian translation], Mir, Moscow (2000).Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Yu. S. Eremin
    • 1
  • A. A. Belogorlov
    • 1
    • 2
  • A. M. Grekhov
    • 1
    • 2
  • A. V. Volkov
    • 2
  1. 1.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia
  2. 2.Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations