Measurement Techniques

, Volume 58, Issue 2, pp 127–136 | Cite as

On the New Definitions for the SI Base Units. Why the Atomic Kilogram is Preferable

  • K. A. Bronnikov
  • V. D. Ivashchuk
  • M. I. Kalinin
  • S. A. Kononogov
  • V. N. Melnikov
  • V. V. Khruschov
Fundamental Problems in Metrology

The role of the fundamental constants and of measurement data on the Planck and Avogadro constants, the kelvin, and the electrical charge in the planned transition to new definitions of the four SI base units (kilogram, mole, ampere, and kelvin) based on fixed values of these constants is discussed.


redefinition of the SI base units fundamental physical constants dimension of a physical quantity instability of the international prototype kilogram 


  1. 1.
    V. N. Melnikov, “Gravitation and cosmology as key problems of the millennium,” Einstein Cent. Int. Conf.: AIP Conf. Proc., Paris, No. 861, 109–126 (2006).Google Scholar
  2. 2.
    S. A. Kononogov, V. N. Melnikov, and V. V. Khruschov, “Constants of the extended standard model and search for their temporal variations,” Gravit. Cosmol., 15, No. 2, 158–163 (2009).CrossRefADSzbMATHGoogle Scholar
  3. 3.
    BIPM,, accessed Sept. 2, 2014.
  4. 4.
    I. M. Mills et al., “Redefinition of the kilogram, ampere, kelvin, and mole: a proposed approach to implementing the CIPM recommendation 1 (CI-2005),” Metrologia, 43, No. 3, 227–246 (2006).CrossRefADSGoogle Scholar
  5. 5.
    M. J. T. Milton, R. Davis, and N. Fletcher, “Towards a new SI: a review of progress made since 2011,” Metrologia, 51, No. 3, R21–R30 (2014).CrossRefADSGoogle Scholar
  6. 6.
    G. Girard, “The third periodic verification of national prototypes of the kilogram,” Metrologia, 31, 317–336 (1994).CrossRefADSGoogle Scholar
  7. 7.
    S. A. Kononogov and V. N. Mel’nikov, “The fundamental physical constants, gravitational constant, and the SEE Space Experiment Project,” Izmer. Tekhn., No. 6, 3–9 (2005); Measur. Techn., 48, No. 6, 521–531 (2005).Google Scholar
  8. 8.
    M. Gläser et al., “Redefinition of the kilogram and the impact on its future dissemination,” Metrologia. 47, 419–428 (2010).CrossRefADSGoogle Scholar
  9. 9.
    M. R. Moldover et al., “Measurement of the universal gas constant R using a spherical acoustic resonator,” J. Res. NBS, 93, No. 2, 85–144 (1988).Google Scholar
  10. 10.
    H. Grabert and M. H. Devoret, Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures, Plenum Press, NY (1992).CrossRefGoogle Scholar
  11. 11.
    X. Jehl et al., “Hybrid metal-semiconductor electron pump for quantum metrology,” Phys. Rev. X, 3, 021012 (2013); http://Arxiv:1302.6470, accessed Sept. 15, 2014.Google Scholar
  12. 12.
    M. R. Connolly et al., “Gigahertz quantized charge pumping in graphene quantum dots,” http://Arxiv:1207.6597, accessed Sept. 15, 2014.Google Scholar
  13. 13.
    M. Wulf, “Error accounting algorithm for electron counting experiments,” Phys. Rev. B, 87, 035312 (2013).CrossRefADSGoogle Scholar
  14. 14.
    L. Fricke et al., “Counting statistics for electron capture in a dynamic quantum dot,” Phys. Rev. Lett., 110, 126803 (2013).CrossRefADSGoogle Scholar
  15. 15.
    L. Devoille et al., “Quantum metrological triangle experiment at LNE: Measurements on a 3 junction R pump using a 20000:1 winding ratio CCC,” Meas. Sci. Techol., 23, 124011 (2012).CrossRefADSGoogle Scholar
  16. 16.
    P. Mirovsky et al., “Towards quantized current arbitrary waveform synthesis,” J. Appl. Phys., 113, 213704 (2013).CrossRefADSGoogle Scholar
  17. 17.
    L. Fricke et al., “A self-referenced single-electron quantized-current source,” Phys. Rev. Lett., 112, 226803 (2014); http://ArXiv:1312.5669 accessed Sept. 2, 2014.Google Scholar
  18. 18.
    S. Schlamminger et al., “Determination of the Planck constant using a watt balance with a superconducting magnet system at the National Institute of Standards and Technology,” Metrologia, 51, No. 2, S15–S24 (2014).CrossRefADSGoogle Scholar
  19. 19.
    C. A. Sanchez et al., “A determination of Planck’s constant using the NRC watt balance,” Metrologia, 51, No. 2, S5–S14 (2014).CrossRefADSGoogle Scholar
  20. 20.
    B. Andreas et al. (IAC), “Counting the atoms in a 28Si crystal for a new kilogram definition,” Metrologia, 4, S1–S13 (2011).Google Scholar
  21. 21.
    T. Narukawa et al., “Molar-mass measurement of a 28Si-enriched silicon crystal for determination of the Avogadro constant,” Metrologia, 51, 161–168 (2014).CrossRefADSGoogle Scholar
  22. 22.
    R. D. Vocke, Jr., S. A. Rabb, and G. C. Turk, “Absolute silicon molar mass measurements, the Avogadro constant and the redefinition of the kilogram,” Metrologia, 51, 361–365 (2014).CrossRefADSGoogle Scholar
  23. 23.
    Li Shi-Song et al., “Progress on accurate measurement of the Planck constant: watt balance and counting atoms,” http://ArXiv:1409.7597, accessed Sept. 15, 2014.Google Scholar
  24. 24.
    P. J. Mohr, B. N. Taylor, and D. B. Newell, “CODATA recommended values of the fundamental physical constants: 2010,” Rev. Mod. Phys., 84, 1527–1595 (2012).CrossRefADSGoogle Scholar
  25. 25.
    T. P. Hill, J. Miller, and A. P. Consullo, “Towards a better definition of the kilogram,” Metrologia, 48, 83–86 (2011).CrossRefADSGoogle Scholar
  26. 26.
    P. De Bievre, “Second opportunity for chemists to rethink the mole,” Accred. Qual. Assur., 18, 537–540 (2013).CrossRefGoogle Scholar
  27. 27.
    T. P. Hill and V. V. Khruschov, “Is there an objective need for an urgent redefinition of the kilogram and mole?” Izmer. Tekhn., No. 7, 14–17 (2013); Measur. Techn., 56, No. 7, 747–752 (2013).Google Scholar
  28. 28.
    G. D’Agostino et al., “Instrumental neutron activation analysis of an enriched 28Si single crystal,” http://ArXiv:1309.4865, accessed Sept. 15, 2014.Google Scholar
  29. 29.
    A. Merlone et al., “Design and capabilities of the temperature control system for the Italian experiment based on precision laser spectroscopy for a new determination of the Boltzmann constant,” Int. J. Thermophys., 31, No. 7, 1359–1370 (2010).ADSGoogle Scholar
  30. 30.
    L. Pitre et al., “Measurement of the Boltzmann constant kB using a quasi-spherical acoustic resonator,” Int. J. Thermophys., 32, No. 9, 1825–1886 (2011).CrossRefADSGoogle Scholar
  31. 31.
    T. Zandt et al., “Capabilities for dielectric-constant gas thermometry in a special large-volume liquid bath thermostat,” Int. J. Thermophys., 32, No. 7–8, 1355–1365 (2011).CrossRefADSGoogle Scholar
  32. 32.
    Temperature: Its Measurement and Control in Science and Industry: 9th Int. Temperature Symp., Los Angeles, CA, March 19–23, 2012, AIP, 8, No. 1552 (2013).Google Scholar
  33. 33.
    M. de Podesta et al., “A low-uncertainty measurement of the Boltzmann constant,” Metrologia, 50, No. 4, 354–376 (2013).CrossRefADSGoogle Scholar
  34. 34.
    C. Lemarchand et al., “A revised uncertainty budget for measuring the Boltzmann constant using the Doppler broadening technique on ammonia,” Metrologia, 50, No. 6, 623–630 (2013).CrossRefADSGoogle Scholar
  35. 35.
    H. Lin et al., “Improved determination of the Boltzmann constant using a single, fixed-length cylindrical cavity,” Metrologia, 50, No. 5, 417–432 (2013).CrossRefADSGoogle Scholar
  36. 36.
    M. R. Moldover et al., “Acoustic gas thermometry,” Metrologia, 51, No. 1, R1–R19 (2014).CrossRefADSGoogle Scholar
  37. 37.
    K. A. Bronnikov, S. A. Kononogov, and V. N. Melnikov, “Variations in the fine structure constant and multidimensional gravitation,” Izmer. Tekhn., No. 1, 7–12 (2013); Measur. Techn., 56, No. 1, 8–16 (2013).CrossRefGoogle Scholar
  38. 38.
    K. A. Bronnikov, S. A. Kononogov, and V. N. Melnikov, “Variations in the gravitational constant in general theories of gravitation,” Izmer. Tekhn., No. 11, 22–26 (2014).Google Scholar
  39. 39.
    L. K. Issaev, S. A. Kononogov, and V. V. Khruschov, “On the redefinition of the four base SI units,” Izmer. Tekhn., No. 2, 3–8 (2013); Measur. Techn., 56, No. 2, 113–120 (2013).CrossRefGoogle Scholar
  40. 40.
    R. Steiner, E. R. Williams, and D. B. Newell, “Towards an electronic kilogram: an improved measurement of the Planck constant and electron mass,” Metrologia, 42, 431–441 (2005).CrossRefADSGoogle Scholar
  41. 41.
    S. A. Kononogov and V. V. Khrushchev, “On the possibility of replacing the prototype kilogram by an atomic scale for the unit of mass,” Izmer. Tekhn., No. 10, 3–8 (2006); Measur. Techn., 49, No. 10, 953–956 (2006).CrossRefGoogle Scholar
  42. 42.
    B. P. Leonard, “Why the dalton should be redefined exactly in terms of the kilogram,” Metrologia, 49, 487–491 (2012).CrossRefADSGoogle Scholar
  43. 43.
    M. I. Kalinin and S. A. Kononogov, “The Boltzmann constant, the energy significance of temperature and thermodynamic irreversibility,” Izmer. Tekhn., No. 7, 5–8 (2005); Measur. Techn., 48, No. 7, 632–636 (2005).CrossRefGoogle Scholar
  44. 44.
    C. N. Yang and T. D. Lee, “Statistical theory of equations of state and phase transitions. I. Theory of condensation,” Phys. Rev., 87, No. 3, 404–409 (1952).CrossRefADSzbMATHMathSciNetGoogle Scholar
  45. 45.
    M. I. Kalinin and S. A. Kononogov, “Redefinition of the unit of thermodynamic temperature in SI units,” Teplofiz. Vys. Temp., 48, No. 1, 26–31 (2010).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • K. A. Bronnikov
    • 1
  • V. D. Ivashchuk
    • 1
  • M. I. Kalinin
    • 1
  • S. A. Kononogov
    • 1
  • V. N. Melnikov
    • 1
  • V. V. Khruschov
    • 1
  1. 1.All-Russia Research Institute of Metrological Service (VNIIMS)MoscowRussia

Personalised recommendations