Measurement Techniques

, Volume 57, Issue 10, pp 1154–1159 | Cite as

Ultrasonic Laser Diagnostics of Residual Stresses

  • M. Ya. Marusina
  • A. V. Fedorov
  • V. A. Bychenok
  • I. V. Berkutov
Article
  • 98 Downloads

The ultrasonic laser method and an instrument for the measurement of residual stresses with an inclined acousto-optical transducer (UDL-2M laser ultrasonic flaw detector) are presented. The results of experimental investigations of variations in the rate of propagation of an ultrasonic wave in samples made of steel in compression testing are presented. The results demonstrate that the method is sufficiently sensitive for the purpose of determining the stresses in a subsurface layer of the sample. External factors that tend to vary the rate of propagation of ultrasonic waves are considered.

Keywords

laser ultrasonic diagnostics stress–strain state 

References

  1. 1.
    P. S. Prevéy, “Current applications of x-ray diffraction residual stress measurement,” in: Developments in Materials Characterization Technologies, G. F. Vander Voort and J. J. Friel (eds.), American Society of Metals, Materials Park, OH, pp. 103–110.Google Scholar
  2. 2.
    T. Gnäuper-Herold et al., “A comparison of neutron and ultrasonic determinations of residual stress,” Meas. Sci. Technol., 11, 436–444 (2000).ADSCrossRefGoogle Scholar
  3. 3.
    V. V. Klyuev (ed.), Nondestructive Testing: Handbook, Mashinostroenie, Moscow (2006).Google Scholar
  4. 4.
    S. S. Gorelik, L. N. Rastorguev, and Yu. A. Skakov, x-Ray Diffraction and Optoelectronic Analysis, Metallurgiya, Moscow (1970).Google Scholar
  5. 5.
    Yu. P. Pan’kovskii, “Hardware implementation of certain magnetic methods of nondestructive testing,” Mir Izmer., No. 5, 9 (2005).Google Scholar
  6. 6.
    A. N. Guz’, F. G. Makhort, and O. I. Gushcha, Introduction to Acousto-Elasticity, Naukova Dumka, Kiev (1977).Google Scholar
  7. 7.
    N. Ye. Nikitina, Acousto-Elasticity. Experience of Practical Implementation, TALAM, Nizhnii Novgorod (2005).Google Scholar
  8. 8.
    I. N. Yermolov, Theory and Practical Application of Ultrasonic Testing, Mashinostroenie, Moscow (1981).Google Scholar
  9. 9.
    A. Yu. Ivochkin et al., “Measurement of the distribution of the velocity of longitudinal sonic waves in welded joints by a laser opto-acoustic method,” Akust. Zh., 53, No. 4, 1–8 (2007).Google Scholar
  10. 10.
    N. Ye. Nikitina (ed.), “A study of the biaxial stress state of a tubular joint by the ASTRON device,” V Mire Nerazr. Kontr., No. 1 (27), 33–35(2005).Google Scholar
  11. 11.
    V. A. Ivanov, M. Ya. Marusina, and V. S. Sizikov, “Processing measurement information under conditions of uncertainty,” Kontrol. Diagn., No. 4, 40–43 (2001).Google Scholar
  12. 12.
    V. A. Bychenok, I. Yu. Kinzhagulov, and M. P. Marusin, “Application of a laser-ultrasonic generator for determining the stress–strain state of the special materials of articles,” Nauch.-Tekhn. Vestn., Iss. 4 (86), 107–110 (2013).Google Scholar
  13. 13.
    V. A. Ivanov, M. Ya. Marusina, and A. G. Lipin’skii, “Analysis of measurements transformations under conditions of uncertainty,” Datch. Sistemy, No. 10 (53), 15–18 (2003).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • M. Ya. Marusina
    • 1
  • A. V. Fedorov
    • 1
  • V. A. Bychenok
    • 1
  • I. V. Berkutov
    • 1
  1. 1.St. Petersburg National Research University of Information Technologies, Mechanics, and Optics (ITMO)St. PetersburgRussia

Personalised recommendations