Measurement Techniques

, Volume 53, Issue 6, pp 583–591 | Cite as

Possible definition of the unit of mass and fixed values of the fundamental physical constants

  • V. V. Khruschov
Fundamental Problems in Metrology

Ways of increasing the accuracy of the values of the Planck and Avogadro constants in experiments with Watt balances and crystalline silicon spheres are examined. These are needed for the new definitions of the kilogram and mole. The advantages and disadvantages of fixing the values of a number of fundamental physical constants when introducing definitions of the SI units are discussed, in particular a new definition of the unit of mass based on a fixed value of the Avogadro constant.

Key words

measurement standards dimension of the unit of mass fundamental physical constants Avogadro number Planck constant 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The International System of Units, BIPM, Sevres (2006);, accessed Nov. 19, 2009.
  2. 2.
    I. M. Mills et al., “Redefinition of the kilogram: a decision whose time has come,” Metrologia, 42, 71 (2005).CrossRefADSGoogle Scholar
  3. 3.
    I. M. Mills et al., “Redefinition of the kilogram, ampere, kelvin, and mole: a proposed approach to implementing CIPM recommendation 1 (CI-2005),” Metrologia, 43, 227 (2006).CrossRefADSGoogle Scholar
  4. 4.
    V. S. Aleksandrov, S. G. Karshenboim, and E. T. Frantsuz, “On the recommendations of the CIPM regarding the problem of redefining the basic SI units in terms of fundamental physical constants,” Zakonod. Prikl. Metrol., No. 5, 3 (2008).Google Scholar
  5. 5.
    S. A. Kononogov, Metrology and the Fundamental Constants of Physics [in Russian], STANDARTINFORM, Moscow (2008).Google Scholar
  6. 6.
    T. Quinn and K. Burnett, “The fundamental constants of physics, precision measurements and the base units of the SI,” Phil. Trans. Roy. Soc. London, A363, 2101 (2005).ADSGoogle Scholar
  7. 7.
    S. A. Kononogov and V. N. Melnikov, “The fundamental physical constants, the gravitational constant, and the SEE space experiment project,” Izmer. Tekhn., No. 6, 3 (2005); Measur. Techn., 48, 6, 521 (2005).Google Scholar
  8. 8.
    A. Yu. Ignatiev and B. Carson, “Metrological constraints on the variability of the fundamental constants e, h, and c,” Phys. Lett., A331, 361 (2004).ADSGoogle Scholar
  9. 9.
    F. Wilczek, “Fundamental constants,” ArXiv, No. 0708.4361 (2007), accessed Nov. 30, 2009.Google Scholar
  10. 10.
    S. A. Kononogov and V. V. Khruschov, “On the possibility of replacing the prototype kilogram with an atomic standard for the unit of mass,” Izmer. Tekhn., No. 10, 3 (2006); Measur. Techn., 49, 10, 953 (2006).Google Scholar
  11. 11.
    B. P. Kibble, “A measurement of the geomagnetic ratio of the proton by the strong field method,” in: Atomic Masses and Fund. Constants 5, J. H. Sanders and A. H. Wapstra (eds.), Plenum, N.Y. (1976), p. 545.Google Scholar
  12. 12.
    R. Steiner, “Design of an experiment (Watt balance),” BIPM Metrology Summer School 2008,, accessed Nov. 11, 2009.
  13. 13.
    M. Stock, “Watt balance, the Planck constant,” ibid.Google Scholar
  14. 14.
    K. Fujii, “Avogadro project, Avogadro constant,” ibid.Google Scholar
  15. 15.
    B. N. Taylor, “Determining the Avogadro constant from electrical measurement,” Metrologia, 31, 181 (1994).CrossRefADSGoogle Scholar
  16. 16.
    K. Fujii et al., “Present state of the Avogadro constant determination from silicon crystals with natural isotopic compositions,” IEEE Trans. Instrum. Meas., 54, 854 (2005).CrossRefGoogle Scholar
  17. 17.
    G. G. Devyatykh et al., “High purity single crystal mono-isotopic silicon-28 for improved determination of the Avogadro number,” DAN, 421, No. 1, 61 (2008).Google Scholar
  18. 18.
    P. J. Mohr, B. N. Taylor, and D. B. Newell, “CODATA-2006, CODATA recommended values of the fundamental physical constants: 2006,” Rev. Mod. Phys., 80, 633 (2008).CrossRefADSGoogle Scholar
  19. 19.
    S. G. Karshenboim, “New recommended values for the fundamental constants of physics (CODATA 2006),” UFN, 178, 1057 (2008).CrossRefGoogle Scholar
  20. 20.
    K. K. Likharev and A. B. Zorin, “Theory of the Bloch wave oscillations in small Josephson junctions,” J. Low. Temp. Phys., 59, 347 (1985).CrossRefADSGoogle Scholar
  21. 21.
    D. V. Averin and K. K. Likharev, “Single electron charging of quantum wells and dots,” in: Mesoscopic Phenomena in Solids, B. L. Altshuler, P. A. Lee, and R. A. Webb (eds.), Elsevier, Amsterdam (1991), p. 173.Google Scholar
  22. 22.
    M. Wulf and A. B. Zorin, “Error accounting in electron counting experiments,” ArXiv, No. 0811.3927 (2008), accessed Nov. 10, 2009.Google Scholar
  23. 23.
    M. I. Kalinin and S. A. Kononogov, “Redefinition of the unit of thermodynamic temperature in the International System (SI),” Teplofiz. Vys. Temp., 48, No. 1, 26 (2010).Google Scholar
  24. 24.
    B. N. Taylor, “Molar mass and related quantities in the new SI,” Metrologia, 46, L16 (2009).CrossRefADSGoogle Scholar
  25. 25.
    R. F. Fox and T. P. Hill, “An exact value for the Avogadro number,” Amer. Scient., 95, 104 (2007).Google Scholar
  26. 26.
    C. Itzykson and J. B. Zuber, Quantum Field Theory [Russian translation], Mir, Moscow (1984).Google Scholar
  27. 27.
    V. V. Khruschov, “Fundamental interactions in quantum phase space specified by extra dimensional constants,” Grav. Cosmol., 13, 259 (2007).zbMATHADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  1. 1.All-Russia Research Institute for the Metrological Service (VNIIMS)MoscowRussia

Personalised recommendations