Theoretical Medicine and Bioethics

, Volume 27, Issue 6, pp 471–497 | Cite as

What is a Gene? From Molecules to Metaphysics

Article

Abstract

Mendelian genes have become molecular genes, with increasing puzzlement about locating them, due to increasing complexity in genomic webworks. Genome science finds modular and conserved units of inheritance, identified as homologous genes. Such genes are cybernetic, transmitting information over generations; this too requires multi-leveled analysis, from DNA transcription to development and reproduction of the whole organism. Genes are conserved; genes are also dynamic and creative in evolutionary speciation—most remarkably producing humans capable of wondering about what genes are.

Keywords

Cybernetic genes genetic identity intentionality in genes mendelian molecular searching genes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ayala Francisco, J. (1974). The Concept of Biological Progress. In: Ayala Francisco. J., Dobzhansky Theodosius. (eds), Studies in the Philosophy of Biology. New York, Macmillan, pp. 339–355Google Scholar
  2. Berg Paul., Singer Maxine. (1992). Dealing with Genes: The Language of Heredity. Mill Valley, CA, University Science BooksGoogle Scholar
  3. Britten R.J., Davidson E.H. (1969). Gene Regulation for Higher Cells: A Theory. Science 165:349–357CrossRefGoogle Scholar
  4. Brockman John. (1995). The Third Culture: Beyond the Scientific Revolution. New York, Simon and SchusterGoogle Scholar
  5. Burian Richard. M. (1985). On Conceptual Change in Biology: The Case of the Gene. In: Depew D.J., Weber B.H. (eds), Evolution at a Crossroads: The New Biology and the New Philosophy of Science. Cambridge, The MIT Press, pp. 21–42Google Scholar
  6. Campbell, John. H. “Evolving Concepts of Multigene Families.” In Isozymes: Current Topics in Biological and Medical Research, Volume 10: Genetics and Evolution (1983):401–417Google Scholar
  7. Chimpanzee Sequencing and Analysis Consortium. (2005). Initial Sequence of the Chimpanzee Genome and Comparison with the Human Genome. Nature 437:69–87CrossRefGoogle Scholar
  8. Crick Francis. (1966). Of Molecules and Men. Seattle, University of Washington PressGoogle Scholar
  9. Dawkins Richard. (1995). River out of Eden. New York, Basic BooksGoogle Scholar
  10. Dickerson R.E. (1971). The Structure of Cytochrome c and the Rates of Molecular Evolution. Journal of Molecular Evolution 1:26–45CrossRefGoogle Scholar
  11. Fitch Walte. M., Margoliash Emamuel. (1967). Construction of Phylogenetic Trees. Science 155:279–284CrossRefGoogle Scholar
  12. Fogle Thomas. (2000). The Dissolution of Protein Coding Genes in Molecular Biology. In: Beurton Peter. J., Falk Raphael., Rheinberger Hans.-Jörg. (eds), The Concept of the Gene in Development and Evolution. Cambridge, Cambridge University Press, pp. 3–25Google Scholar
  13. Gunter Chris., Dhand Ritu. (1 September, 2005). The Chimpanzee Genome. Nature 437:47CrossRefGoogle Scholar
  14. Human Genome Project Information. Primer on Molecular Genetics. 1998 http://www.ornl.gov/hgmi. Accessed on November 19, 2005.
  15. Jacob F., Monod J. (1961). Genetic Regulatory Mechanisms in the Synthesis of Proteins. Journal of Molecular Biology 3:318–356CrossRefGoogle Scholar
  16. Jaroff Leon. (20 March, 1989). The Gene Hunt. Time 133(12):62–67Google Scholar
  17. Johannsen Wilhelm. (1909). Elemente der exakten Erblichkeitslehre. Jena, Gustav FischerGoogle Scholar
  18. Kalmus H. (1950). A Cybernetical Aspect of Genetics. Journal of Heredity 41(1):19–22Google Scholar
  19. Keller Evelyn. F. (2000). The Century of the Gene. Cambridge, Harvard University PressGoogle Scholar
  20. Kitcher Philip. (1982). Genes. British Journal for the Philosophy of Science 33:337–359CrossRefGoogle Scholar
  21. Lewontin R.C. (1991). Biology as Ideology: The Doctrine of DNA. New York, HarperCollins PublishersGoogle Scholar
  22. Maynard Smith. J. (March 2, 1995). Life at the Edge of Chaos?. New York Review of Books 52(4):28–30Google Scholar
  23. Maynard Smith. J. (2000). The Concept of Information in Biology. Philosophy of Science 67:177–194CrossRefGoogle Scholar
  24. Maynard Smith. J. (2000). Reply to Commentaries. Philosophy of Science 67:214–218CrossRefGoogle Scholar
  25. Morgan T.H., Sturtevant A.H., Muller H.J., Bridges C.B. (1915). The Mechanism of Mendelian Heredity. New York, Henry HoltGoogle Scholar
  26. Portin Peter. (1993). The Concept of the Gene: Short History and Present Status. Quarterly Review of Biology 68(2):173–223CrossRefGoogle Scholar
  27. Rheinberger, Hans-Jörg. “Gene Concepts: Fragments from the Perspective of Molecular Biology.” In The Concept of the Gene in Development and Evolution. Edited by Peter J. Beurton, Raphael Falk., and Hans-Jörg Rheinberger. 219–239 Cambridge: Cambridge University Press, 2000Google Scholar
  28. Ridley M. (2000). Genome: The Autobiography of a Species in 23 Chapters. New York, Harper CollinsGoogle Scholar
  29. Schrödinger, Erwin. What Is Life? Cambridge: Cambridge University Press, [1944] 1951Google Scholar
  30. Shapiro J.A. (2005). A 21st Century View of Evolution: Genome System Architecture, Repetitive DNA, and Natural Genetic Engineering. Gene 345:91–100CrossRefGoogle Scholar
  31. Singer M., Berg P. (1991). Genes and Genomes: A Changing Perspective. Mill Valley CA, University Science BooksGoogle Scholar
  32. Stern D.L. (2000). Evolutionary Developmental Biology and the Problem of Variation. Evolution 54:1079–1091Google Scholar
  33. Sterelny K., Griffiths P.E. (1999). Sex and Death: An Introduction to Philosophy of Biology. Chicago, University of Chicago PressGoogle Scholar
  34. Venter, J. Craig et al. “The Sequence of the Human Genome.” Science 291 (2001):1304–1351Google Scholar
  35. Waters C.K. (1994). Genes Made Molecular. Philosophy of Science 61(2):163–185CrossRefGoogle Scholar
  36. Watson J.D. (1976). Molecular Biology of the Gene, 3rd ed. Menlo Park, CA, W. A. BenjaminGoogle Scholar
  37. Watson J.D., Crick F. (1953). Genetical Implications of the Structure of Deoxyribonucleic Acid. Nature 171:964–967CrossRefGoogle Scholar
  38. Wiener N. (1948). Cybernetics. New York, John WileyGoogle Scholar
  39. Williams G.C. (1992). Natural Selection: Domains, Levels, and Challenges. New York, Oxford University PressGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Colorado State UniversityFort CollinsUSA

Personalised recommendations