Metascience

, Volume 20, Issue 2, pp 225–251

The physics and metaphysics of identity and individuality

Steven French and Décio Krause: Identity in physics: A historical, philosophical, and formal analysis. Oxford: Clarendon Press, 2006, 440 pp, £68.00 HB
  • Don Howard
  • Bas C. van Fraassen
  • Otávio Bueno
  • Elena Castellani
  • Laura Crosilla
  • Steven French
  • Décio Krause
Book Symposium

References

  1. Arenhart, J.B.B., and D. Krause. 2009. Quantifiers and the foundations of quasi-set theory. Principia 13: 251–268.Google Scholar
  2. Azzouni, J. 2004. Deflating existential consequence. New York: Oxford University Press.CrossRefGoogle Scholar
  3. Bitbol, M. 2007. Materialism, stances, and open-mindedness. In ed. Monton, 229–270.Google Scholar
  4. Chakravartty, A. 2007. A metaphysics for scientific realism: Knowing the unobservable. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  5. Colyvan, M. 2001. The indispensability of mathematics. New York: Oxford University Press.CrossRefGoogle Scholar
  6. Domenech, G., and F. Holik. 2007. A discussion on particle number and quantum indistinguishability. Foundations of Physics 37: 855–878.CrossRefGoogle Scholar
  7. Domenech, G., F. Holik, and D. Krause. 2008. Q-spaces and the foundations of quantum mechanics. Foundations of Physics 38: 969–994.CrossRefGoogle Scholar
  8. Domenech, G., F. Holik, L. Kniznik, and D. Krause. forthcoming. No labeling quantum mechanics of indiscernible particles. International Journal of Theoretical Physics. Google Scholar
  9. Ebbinghaus, H.D., J. Flum, and W. Thomas. 1994. Mathematical logic. New York: Springer.Google Scholar
  10. French, S. 2003. Scribbling on the blank sheet: Eddington’s structuralist conception of objects. Studies in History and Philosophy of Modern Physics 34: 227–259.CrossRefGoogle Scholar
  11. French, S. forthcoming. Unitary inequivalence as a problem for structural realism.Google Scholar
  12. French, S., and D. Krause. 2010. Some remarks on the Theory of Quasi-sets. Studia Logica 95: 101–124.Google Scholar
  13. Jauernig, A. 2004. Leibniz freed from every flaw: A Kantian reads Leibnizian metaphysics. Dissertation: Princeton University.Google Scholar
  14. Ladyman, J. 2007. Scientific structuralism: On the identity and diversity of objects in a structure. Proceedings of the Aristotelian Society Supplementary 81: 23–43.CrossRefGoogle Scholar
  15. Ladyman, J., and T. Bigaj. 2010. The principle of the identity of indiscernibles and quantum mechanics. Philosophy of Science 77: 117–136.CrossRefGoogle Scholar
  16. Luckenbach, Sidney. (ed.). 1972. Probabilities, problems and paradoxes. Encino: Dickenson.Google Scholar
  17. McGinn, C. 2000. Logical properties. Oxford: Clarendon Press.CrossRefGoogle Scholar
  18. Monton, B. (ed.). 2007. Images of empiricism: Essays on science and stances, with a reply from Bas C. van Fraassen. Oxford: Oxford University Press.Google Scholar
  19. Muller, F.A., and S.W. Saunders. 2008. Discerning fermions. British Journal Philosophy of Science 59: 499–548.CrossRefGoogle Scholar
  20. Muller, F., and M. Seevinck. 2009. Discerning elementary particles. Philosophy of Science 76: 179–200.CrossRefGoogle Scholar
  21. Ruetsche, L. 2002. Interpreting quantum field theory. Philosophy of Science 69: 348–378.CrossRefGoogle Scholar
  22. Stachel, J. 2005. Structural realism and contextual individuality. In Hilary Putnam, ed. Y. Ben-Menahem. Cambridge: Cambridge University Press.Google Scholar
  23. van Fraassen, B. 1969. An introduction to the philosophy of time and space. New York: Random House.Google Scholar
  24. van Fraassen, B. 1972. Probabilities and the problem of individuation. In ed. Luckenbach, 121–138.Google Scholar
  25. van Fraassen, B. 1991. Quantum mechanics: An empiricist view. Oxford: Clarendon Press.Google Scholar
  26. van Fraassen, B., and I. Peschard. 2008. Identity over time: objectively, subjectively. Philosophical Quarterly 58: 15–35.Google Scholar
  27. Wallace, D. 2006. In defence of Naiveté: on the conceptual status of Lagrangian quantum field theory. Synthese 151: 33–80.CrossRefGoogle Scholar
  28. Weyl, H. 1931. The theory of groups and quantum mechanics. (Translated from the second, revised German edition by H. P. Robertson. The first edition was published in 1928.) New York: Dover.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Don Howard
    • 1
  • Bas C. van Fraassen
    • 2
  • Otávio Bueno
    • 3
  • Elena Castellani
    • 4
  • Laura Crosilla
    • 5
  • Steven French
    • 6
  • Décio Krause
    • 7
  1. 1.Department of Philosophy and Graduate Program in History and Philosophy of ScienceUniversity of Notre DameNotre DameUSA
  2. 2.Philosophy DepartmentSan Francisco State UniversitySan FranciscoUSA
  3. 3.Department of PhilosophyUniversity of MiamiCoral GablesUSA
  4. 4.Department of PhilosophyUniversity of FlorenceFlorenceItaly
  5. 5.Department of Pure Mathematics, School of MathematicsUniversity of LeedsLeedsUK
  6. 6.Department of PhilosophyUniversity of LeedsLeedsUK
  7. 7.Department of PhilosophyFederal University of Santa CatarinaFlorianópolisBrazil

Personalised recommendations