Metascience

, Volume 18, Issue 1, pp 5–41 | Cite as

Gauge Pressure

  • Dean Rickles
  • Chris Smeenk
  • Holger Lyre
  • Richard Healey
Review Symposium
  • 84 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anandan, J. “Remarks Concerning the Geometries of Gravity and Gauge Fields”. in: B.L. Hu, M.P. Ryan and C.V. Vishveshwara (eds.) Directions in General Relativity (Vol. 1) (Cambridge: Cambridge University Press, 1993), pp. 10–20.Google Scholar
  2. Ashtekar, A. and R. Tate. Lectures on Non-Perturbative Canonical Gravity (Singapore: World Scientific, 1991).Google Scholar
  3. Auyang, S. How is Quantum Field Theory Possible? (Cambridge: Cambridge University Press, 1995).Google Scholar
  4. Baez, J. and Muniain, J. Gauge Fields, Knots and Gravity (River Edge, NJ: World Scientific, 1994).Google Scholar
  5. Barrett, J. “Holonomy and Path Structures in General Relativity and Yang–Mills Theory”, International Journal of Theoretical Physics 30 (1991), pp. 1171–1215.CrossRefGoogle Scholar
  6. Belot, G. “Symmetry and Gauge Freedom”, Studies in History and Philosophy of Modern Physics 34 (2003), pp. 189–225.CrossRefGoogle Scholar
  7. Berry, M. “Quantal Phase Factors Accompanying Adiabatic Changes”, Proceedings of The Royal Society A392 (1984) pp. 45–57Google Scholar
  8. Brown, H. R. and O. Pooley. “The Origin of the Spacetime Metric: Bell’s ‹Lorentzian Pedagogy’ and its Significance in General Relativity”, in C. Callender and N. Huggett (eds.), Physics Meets Philosophy at the Planck Scale (Cambridge: Cambridge University Press, 2001), pp. 256–273.Google Scholar
  9. Cao, T.-Y. Conceptual Developments of 20th Century Field Theories (Cambridge: Cambridge University Press, 1998).Google Scholar
  10. Catren, G. “Geometric Foundations Of Classical Yang–Mills Theory”, Studies in History and Philosophy of Modern Physics 39 (2008), pp. 511–531.CrossRefGoogle Scholar
  11. Cho, Y. M. “Einstein Lagrangian as the Translational Yang–Mills Lagrangian”, Physical Review D 14 (1976), pp. 2521–2525.CrossRefGoogle Scholar
  12. Earman, J. “Locality, Nonlocality, and Action at a Distance: A Skeptical Review of Some Philosophical Dogmas”, in P. Achinstein and R. Kargon (eds.) Kelvin’s Baltimore Lectures and Modern Theoretical Physics: Historical and Philosophical Perspectives (Cambridge: MIT Press, 1987).Google Scholar
  13. Earman, J.“Tracking Down Gauge: An Ode to the Constrained Hamiltonian Formalism”, in K. Brading and E. Castellani (eds.) Symmetries in Physics: Philosophical Reflections (Cambridge: Cambridge University Press, 2003), pp. 140–162.Google Scholar
  14. Earman, J. and J. Roberts. “Contact with the Nomic: A Challenge for Deniers of Humean Supervenience about Laws of Nature Part I: Humean Supervenience”, Philosophy and Phenomenological Research 71 (2005), pp. 1–22.CrossRefGoogle Scholar
  15. Gambini, R. and J. Pullin. Loops, Knots, Gauge Theories and Quantum Gravity (Cambridge: Cambridge University Press, 2000).Google Scholar
  16. Giulini, D. “Remarks on the Notions of General Covariance and Background Independence”, in E. Seiler and I.-O. Stamatescu (eds.) Approaches to Fundamental Physics (Berlin: Springer, 2007)Google Scholar
  17. Guay, A. “Essay Review: Conceptual Foundations of Yang–Mills Theories”, Studies in History and Philosophy of Modern Physics 39 (2008a) pp. 687–693.CrossRefGoogle Scholar
  18. Guay, A. “A Partial Elucidation of the Gauge Principle”, Studies in History and Philosophy of Modern Physics 39 (2008b), pp. 346–363.CrossRefGoogle Scholar
  19. Hayashi, K. and T. Shirafuji. “New General Relativity”, Physical Review D 19 (1979) pp. 3524–3553.CrossRefGoogle Scholar
  20. Healey, R. “Substance, Modality and Spacetime”, Erkenntnis 42 (1995) pp. 287–316.CrossRefGoogle Scholar
  21. Healey, R. “Change Without Change and How to Observe it in General Relativity”, Synthese 141 (2004) pp. 1–35.CrossRefGoogle Scholar
  22. Hehl, F.W., J.D. Mccrea, E.W. Mielke, and Y. Ne’eman. “Metric-Affine Gauge Theory of Gravity: Field Equations, Noether Identities, World Spinors, and Breaking of Dilation Invariance”, Physics Reports 258 (1995) pp. 1–171.CrossRefGoogle Scholar
  23. Liu, C. “Gauge Gravity and the Unification of Natural Forces”, International Studies In The Philosophy of Science 17 (2003) pp. 143–159.CrossRefGoogle Scholar
  24. Lyre, H. “Holism and Structuralism in U(1) Gauge Theory”, Studies in History and Philosophy of Modern Physics 35 (2004) pp. 643–670.CrossRefGoogle Scholar
  25. Lyre, H. “Does the Higgs Mechanism Exist?”, International Studies in the Philosophy of Science, in print [Arxiv:0806.1359v1] (2008)Google Scholar
  26. Lyre, H., and T.O. Eynck. “Curve it, Gauge it, or Leave it? Practical Underdetermination in Gravitational Theories”, Journal for General Philosophy of Science 34 (2003) pp. 277–303.CrossRefGoogle Scholar
  27. Martin, C. “On Continuous Symmetries and the Foundations of Modern Physics”, in K. Brading and E. Castellani (eds.) Symmetries in Physics: Philosophical Reflections (Cambridge: Cambridge University Press, 2003).Google Scholar
  28. Nester, J.M. “Is there Really a Problem with the Teleparallel Theory?” Classical and Quantum Gravity 5 (1988) pp. 1003–1010.CrossRefGoogle Scholar
  29. Quine, W.V.O. “Things and Their Place in Theories”, in W.V.O. Quine (ed.) Theories and Things (Cambridge, MA: Harvard University Press, 1981)Google Scholar
  30. Redhead, M.L.G. “The Interpretation of Gauge Symmetry”. in K. Brading and E. Castellani (eds.) Symmetries in Physics: Philosophical Reflections (Cambridge: Cambridge University Press, 2003).Google Scholar
  31. Rickles, D. Symmetry, Structure and Spacetime (North Holland: Elsevier, 2008).Google Scholar
  32. Schilpp, P.A. (ed.), Albert Einstein: Philosopher–Scientist (Lasalle, Illinois: Open Court, 1949).Google Scholar
  33. Seevinck, M. “Holism, Physical Theories and Quantum Mechanics”. Studies in the History and Philosophy of Modern Physics. 35 (2004) pp. 693–712.CrossRefGoogle Scholar
  34. Shapere, A. and F. Wilczek. Geometric Phases in Physics (Singapore: World Scientific, 1989)Google Scholar
  35. Stein, H. “On the Notion of Field in Newton, Maxwell and Beyond”, in R. H. Stuewer (ed.) Historical and Philosophical Perspectives of Science (Minneapolis: University of Minnesota Press, 1970) pp. 264–287.Google Scholar
  36. Trautman, A. “Fibre Bundles, Gauge Fields, and Gravitation”, in A. Held (ed.), General Relativity and Gravitation: One Hundred Years after the Birth of Albert Einstein (New York: Plenum Press, 1980) pp. 287–308.Google Scholar
  37. Utiyama, R. “Invariant Theoretical Interpretation of Interaction”, Physical Review 101 (1956), pp. 1597–1607.CrossRefGoogle Scholar
  38. Wallace, D. “Time-Dependent Symmetries: The Link between Gauge Symmetries and Indeterminism”, in K. Brading and E. Castellani (eds.) Symmetries in Physics: Philosophical Reflections (Cambridge: Cambridge University Press, 2003) pp. 163–173.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Dean Rickles
    • 1
  • Chris Smeenk
    • 2
  • Holger Lyre
    • 3
  • Richard Healey
    • 4
  1. 1.Unit for History and Philosophy of ScienceUniversity of SydneySydneyAustralia
  2. 2.Department of PhilosophyUniversity of Western OntarioLondonCanada
  3. 3.Philosophy DepartmentUniversity of BielefeldBielefeldGermany
  4. 4.Department of PhilosophyUniversity of ArizonaTucsonUSA

Personalised recommendations