pp 1–11 | Cite as

Application of Sulfide Copper Ores Oxidizing Roasting Products as Sulfidizing Agent During Melting Nickel Raw Materials To Matte

  • E. N. SelivanovEmail author
  • A. M. Klyushnikov
  • R. I. Gulyaeva

X-ray fluorescence analysis, X-ray powder diffraction, electron microprobe analysis, scanning electron microscopy, and thermal analysis are used to evaluate the material composition, structure and thermal properties of Dergamysh ore deposit and condensed roasted (750–850°C) products. Ore heating in air is accompanied by oxidation of sulfur and iron oxides, combustion and decomposition of sulfides, carbonate thermolysis, and decomposition of iron, copper, and zinc sulfates. Processes are generally completed up to 850°C. With desulfurization to the level of 60–94% sulfur the ore retains a porphyroblastic structure. Crystals (1–5 μm) of hexagonal and monoclinic pyrrhotites, corresponding to the general formula Fe0.80−0.93S, sphalerite and bornite border a mixture of fine (1 μm) olivine and spinel. In this case sulfides and oxides in contact with them achieve a similar concentration of non-ferrous metals, wt.%: up to 0.7 Co, 1.5–21.8 Cu, and 1.1–56.6 Zn. Heating a mixture of roasted (70–80% desulfurization) sulfide copper ore with nickeliferrous saprolite ore, calcium oxide and carbon in a weight ratio of 60:100:10:2.5 provides matte (4.1 wt. % Ni, 2.5 wt. % Cu, 0.38 wt. % Co, 2.1 g/ton Au, and 3.6 g/ton Ag) concentrating 90.3% nickel, 82.7% copper, 85.3% cobalt, and up to 99.0% of precious metals. The products of oxidation roasting of sulfide copper ores can be considered as an effective sulfiding agent and collector of valuable metals during smelting of nickeliferrous saprolite ores. The technology of joint reduction and sulfiding smelting of roasted copper ores and calcined saprolite ores is a promising way to use poor and mineral raw materials that are hard to enrich and to reduce SO2 emissions into the atmosphere.


ore sulfides oxides copper nickel cobalt roasting sulfiding agent melting matte extraction technology 


  1. 1.
    J. P. T. Kapusta, “JOM world nonferrous smelters survey. Part I: Copper (industrial survey),” JOM,56, No. 7, 21–27 (2004).CrossRefGoogle Scholar
  2. 2.
    Technical Information Reference for the Best Available Technology TIS 3-2015. Copper Production, NDT Bureau (2015).Google Scholar
  3. 3.
    M. V. Knyazev, A. G. Ryabko, L. B. Tsymbulov, et al., “Two-zone Vanyukov furnace: New potential copper and nickel production,” in: Proc. оf the Sohn Int. Symposium (San Diego, USA. 2006), 8 (2006), 327–334.Google Scholar
  4. 4.
    M. L. Bakker, S. Nikolic, and P. J. Mackey, “ISASMELTTM TSL – Application for Nickel,” Miner. Eng., No. 24, 610–619 (2011).Google Scholar
  5. 5.
    F. Crundwell, Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals, Elsevier (2011).Google Scholar
  6. 6.
    E. N. Selivanov, R. I. Gulaeva, and A. M. Klyushnikov, “Study of the structure and phase composition of copper-cobalt sulfide ores of the Dergamysh deposit,” Svet. Met., No. 3, 13–17 (2016).Google Scholar
  7. 7.
    E. N. Selivanov, R. I. Gulyaeva, and A. M. Klyushnikov, “Technical and economic evaluation of direct metallurgical processing of sulfide ores,” Svet. Met., No. 3, 15–21 (2015).Google Scholar
  8. 8.
    E. N. Selivanov, A. M. Klyushnikov, R. I. Gulyaeva, et al., “Prospects of direct metallurgical treatment of sulfide ores,” in: Proc. Sci.-Pract. Conf. with Internat. Participation and Elements of School of Young Scientists “Prospects for Developing Metallurgy and Engineering Using Improved Fundamental Research and NIOKR”, Ural. Rabochii, Ekaterinburg (2015).Google Scholar
  9. 9.
    S. P. Nagaeva, O. P. Mezentseva, and M. V. Kozorez, “Mineralogical study of copper-cobalt containing ores of the Dergamysh deposit,” Gorn. Zh., No. 11, 31–35 (2014).Google Scholar
  10. 10.
    Yu. A. Savinova, L. Sh. Tsemekhman, and V. A. Popov, “Comparative analysis of substance composition of solid products of oxidation firing of sulfide ores concentrates of nonferrous metals,” Tsvet. Met., No. 11, 27–35 (2018).CrossRefGoogle Scholar
  11. 11.
    Fang Qinfang, Zhang Hongwei, and Guo Ying, “Thermal decomposition of dolomite,” Advanced Materials Research,177, 617–619 (2011).Google Scholar
  12. 12.
    V. A. Luganov and V. I. Shabalin, “Thermal dissociation of pyrite during processing of pyrite-containing raw materials,” Canad. Metallurg. Quarterly,33, No. 3, 169–174 (1994).CrossRefGoogle Scholar
  13. 13.
    L. Charpentier and P. J. Masset, “Thermal decomposition of pyrite FeS2 under reducing conditions,” Mater. Sci. Forum,654–656, 2398–2401 (2010).CrossRefGoogle Scholar
  14. 14.
    S. R. Gzogyan and E. A. Chanturiya, “Effect of thermal action on iron sulfide and oxide,” Gorn. Inform. Tekhn. Byul., No. 5, 63–69 (2010).Google Scholar
  15. 15.
    Y. H. Luo, D. Q. Zhu, J. Pan, and X. L. Zhou, “Thermal decomposition behaviour and kinetics of Xinjiang siderite ore,” Miner. Proc. and Extractive Metallurgy,125, No. 1, 17–25 (2016).CrossRefGoogle Scholar
  16. 16.
    J. Guntner and J. Hammerschmidt, “Sulphating roasting of copper-cobalt concentrates,” J. of the Southern African Institute of Mining and Metallurgy,112, 455–460 (2012).Google Scholar
  17. 17.
    G. G. Chuyanov, Dewatering, Dust capture and Environmental Protection [in Russian], Nedra, Moscow (1987).Google Scholar
  18. 18.
    I. D. Reznik, G. P. Ermakov, and Ya. M. Shneerson, Nickel, in 3 Vol. [in Russian], Vol. 2, Nauk. Tekhnol., Moscow (2001).Google Scholar
  19. 19.
    N. I. Kopylov, M. P. Smirnov, and M. Z. Toguzov, Composition Diagrams of Systems in Heavy Nonferrous Metallurgy [in Russian], Metallurgiya, Moscow (1993).Google Scholar
  20. 20.
    A. G. Khoroshavin, Forsterite [in Russian], Teplotekhnika, Moscow (2004).Google Scholar
  21. 21.
    G. V. Samsonov and S. V. Drozdova, Sulfides [in Russian], Metallurgiya, Moscow (1972).Google Scholar
  22. 22.
    N. Belzile, Yu-Wey Chen, Mey-Fang Cai, and Yuerong Li, “A review on pyrrhotite oxidation,” J. of Geoch. Expl., No. 84, 65–76 (2004).CrossRefGoogle Scholar
  23. 23.
    I. D. Reznik, S. I. Sobol’, and V. M. Khudyakov, Cobalt, in 2 Vol. [in Russian], Vol. 1, Mashinostroenie, Moscow (1995)Google Scholar
  24. 24.
    E. N. Selivanov, A. M. Klyushnikov, V. M. Chumarev, and R. I. Julyaeva, RF Patent 2657267, МPК С22В 23/02, С22В 5/08. Charge for Oxidation-Sulfiding of an Oxidized Nickel Ore Melt, Claim 06.08.2017; Publ. 06.09.2018; Bull. No. 16.Google Scholar
  25. 25.
    P.-M. Guo and L.-F. Zhang, “Study on catalytic mechanism of Boudouard reaction,” Iron and Steel, No. 43, 26–30 (2008).Google Scholar
  26. 26.
    E. N. Selivanov, A. A. Sorokin, N. V. El’kina, et al., “Separation of impurity elements during shaft melting of Serov deposit ore,” Tsvet. Met., No. 10, 17–20 (1993).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • E. N. Selivanov
    • 1
    Email author
  • A. M. Klyushnikov
    • 1
  • R. I. Gulyaeva
    • 1
  1. 1.Institute of Metallurgy, Ural Section, Russian Academy of SciencesEkaterinburgRussia

Personalised recommendations