Advertisement

Development of an Import-Replacing Technology Aimed at Manufacturing Mandrels Маde of X35CrMoV05KU-UNI 2955 Steel for Tubular Mills

  • N. A. KhlyamkovEmail author
  • N. Yu. Zhidyaeva
  • Yu. M. Markova
  • S. N. Kuznetsov
Article
  • 1 Downloads

The “Kurchatov Institute” NRC, “Prometei” CRI of Structural Materials, in collaboration with the “OMZ-Spetsstal’” developed and mastered the technology for manufacturing long mandrels made of X35CrMoV05KU-UNI 2955 steel with guaranteed service life. The obtained mandrels meet the requirements of technical documentation as for their mechanical properties, hardness, grain sizes, ultrasonic testing, and contents of nonmetallic impurities. These mandrels passed through the industrial tests at the Taganrog Pipe Plant. The service life of the mandrels produced at the “OMZ-Spetsstal’” corresponds to the foreign analogs.

Keywords

X35CrMoV05KU-UNI 2955 steel sulfur phosphorus impurities of nonferrous metals solidification of forged ingots forging of mandrel blanks press with a power of 6000 ton-f critical points heat treatment of the mandrels mechanical properties hardness; grain size results of ultrasonic testing nonmetallic inclusions 

References

  1. 1.
    N. M. Vavilkin and V. V. Bukhmirov, Piercing Mandrel [in Russian], MISiS, Moscow (2000).Google Scholar
  2. 2.
    B. A. Romantsev, A. S. Aleshchenko, Yu. V. Gamin, et al., “Specific features of wear of mandrels of the TPA 159-426 piercing mill in the course of piercing of continuous cast blanks of large diameters,” Kuzn.-Shtanp. Proizv. Obr. Mater. Davl., No. 4, 22–31 (2017).Google Scholar
  3. 3.
    K. Serin and Kh. I. Pekhle, “Elevated durability of tools intended for hot treatment in the production of seamless pipes,” Chern Met., No. 3, 59–67 (2015).Google Scholar
  4. 4.
    M. Yu. Chubukov, D. V. Rutskii, N. A. Zyuban, and D. P. Uskov, “Investigation of the influence of the technology of manufacturing of mandrels for piercing mills on the structures of the surface and internal oxide layers,” Chern Met., No. 1, 28–33 (2016).Google Scholar
  5. 5.
    M. Yu. Chubukov, D. V. Rutskii, D. P. Uskov, et al., “Influence of the duration of operation of mandrels in a piercing mill on the structure and composition of surface layers,” Chern Met., No. 11, 26–30 (2016).Google Scholar
  6. 6.
    S. S. Sycheva, V. F. Petrova, A. N. Kustova, and Yu. N. Dubrovtsev, “Investigation of the causes of fracture of piercing mandrels made of 20Kh2N4MF steel,” Izv. Volgograd. Gos. Tekh. Univ., No. 5, 122–124 (2015).Google Scholar
  7. 7.
    G. N. Sokolov, V. B. Litvinenko-Ar’kov, and V. I. Lysak, “Methods for increasing the service life of piercing mandrels of pipe mills,” Zagotov. Proizv. Mashinostroen., No. 11, 10–14 (2011).Google Scholar
  8. 8.
    B. A. Romantsev, O. K. Matyko, A. V. Goncharuk, et al, “`Elevation of the wear resistance of mandrels of a piercing mill,” Izv. Vyssh. Uchebn. Zaved., Chern. Metallurg., No. 11, 16–19 (2008).Google Scholar
  9. 9.
    R. A. Zykova, Yu. M. Srypchenko, Yu. M. Politaev, and V. I. Shcherbina, Tool Carbon and Alloyed Steels. Branch Catalog [in Russian], TsNIIiTÉKI ChM, Moscow (1990).Google Scholar
  10. 10.
    L. A. Pozdnyak, S. I. Tishaev, Yu. M. Skrypchenko, et al., Tool Steels. A Handbook [in Russian], Metallurgiya, Moscow (1977).Google Scholar
  11. 11.
    H. Knüppel, Desoxydation und Vakuumbehandlung von Stahlschmelzen, Verlag Stahleisen, Düsseldorf (1984).Google Scholar
  12. 12.
    V. A. Efimov, Casting and Crystallization of Steel [in Russian], Metallurgiya, Moscow (1976).Google Scholar
  13. 13.
    V. S. Dub, A. N. Romashkin, A. N. Mal’ginov, et al., “Influence of the geometry of ingots on their chemical inhomogeneity. Part 1,” Metallurg, No. 11, 45–52 (2013).Google Scholar
  14. 14.
    A. N. Romashkin, V. S. Dub, D. S. Tolstykh, et al., “Prediction of carbon liquation in steel forging ingot cross-section,” Metallurg, No. 8, 28–41 (2016); English translation:Metallurgist, Issues 7-8, 786–801 (2016).Google Scholar
  15. 15.
    I. Ya. Tarnakovskii, V. N. Trubin, and M. G. Zlatkin, Free Forging on Presses [in Russian], Mashinostroenie, Moscow (1967).Google Scholar
  16. 16.
    G. A. Pimenov, G. N. Filimonov, and A. I. Zhidkov, “Improvement of the forging technology of long-length forgings of shafts,” Tyazhel. Mashinostr., No. 8, 18–21 (1993).Google Scholar
  17. 17.
    A. I. Mokhov, V. S. Maksimchuk, A. Yu. Petunin, and S. I. Danilin, “Improvement of the quality of deformed metal in forging of large-scale forgings of shafts,” Kuzn.-Shtamp. Proizv., No. 5, 5–7 (1995).Google Scholar
  18. 18.
    R. W Cahn and P. Haasen (editors), Physical Metallurgy, Vol. 2: Phase Transformations in the Solid State, North-Holland Physics Publishing, Amsterdam (1983).Google Scholar
  19. 19.
    V. G. Molyarov and A. C. Min, “Grain refinement during γ –α transformation in a low-carbon steel,” Metallurg, No. 6, 11–15 (20080; English translation:Russ. Metall. (Metally), No. 8, 755–760 (2008).Google Scholar
  20. 20.
    D. A. Ringinen, A. V. Chastukhin, G. E. Khadeev, et al., “Evolution of austenite grain structure and microalloying element precipitation during heating of steel of strength class K65 (X80) for rolling,” Metallurg, Nos. 11, 67–74 (2013); English translation:Metallurgist,57, Nos. 11-12, 996–1004 (2014).Google Scholar
  21. 21.
    S. V. Korotkovskaya, V. V. Orlov, and E. I. Khlusova, “Influence of deformation on the formation of ultrafine structure in lowcarbon low-alloy steels,” Metallurg, No. 11, 78–81 (2013).Google Scholar
  22. 22.
    V. D. Sadovskii, Structural Heredity in Steel [in Russian], Metallurgiya, Moscow (1973).Google Scholar
  23. 23.
    L. A. Lisitskaya, Secrets of an Ultrafine Grains in Steel [in Russian], MOIMPEKS, Moscow (1997).Google Scholar
  24. 24.
    X. Wang, X. Wang, B. Wang, et al., “Differential calculation model for liguidus temperature of steel,” Steel Res. Int., No. 3, 164–168 (2011).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • N. A. Khlyamkov
    • 1
    Email author
  • N. Yu. Zhidyaeva
    • 2
  • Yu. M. Markova
    • 1
  • S. N. Kuznetsov
    • 2
  1. 1.“Kurchatov Institute” NRC, “Prometei” Central Research Institute of Structural MaterialsSt.-PetersburgRussia
  2. 2.“OMZ-Spetsstal,” LLCSt. PetersburgRussia

Personalised recommendations