Distribution of Antimony in Copper-Zinc Concentrate Metallurgical Processing Products

  • E. N. SelivanovEmail author
  • D. O. Novikov
  • V. V. Belyaev

The distribution of antimony in sulfide copper-zinc concentrates processing products manufactured according to a production scheme including autogenous smelting, matte conversion to blister copper, and flotation extraction of metals from slags, is evaluated. The main products concentrating antimony concern autogenous smelting and conversion dust. The proportion of antimony transferred into these products does not exceed 40%, and the rest is removed with slag flotation treatment tailings. With a relatively low antimony content in blister copper its electrolysis sludge contains up to 15% Sb. Dust and anode sludge are considered as a source of antimony production.


antimony sulfide concentrate elements distribution autogenous smelting Vanyukov furnace matte conversion slag flotation gas cleaning 


  1. 1.
    A. Yu. Shustov and V. V. Denisov, “Comprehensive technology for producing lead and antimony,” Tsvet. Met., No. 10, 37–40 (2004).Google Scholar
  2. 2.
    R. S. Multani, T. Feldmann, and G. P. Demopoulos, “Antimony in the metallurgical industry: a review of its chemistry and environmental stabilization options,” Hydrometallurgy,164, 141–153 (2016).CrossRefGoogle Scholar
  3. 3.
    I. R. Polyvyannyi and V. A. Lata, Antimony Metallurgy [in Russian], Nauka. Almaty (1991).Google Scholar
  4. 4.
    V. A. Chanturiya and V. A. Bocharov, “Contemporary state and main development areas of technology for comprehensive nonferrous metal mineral raw material,” Tsvet. Met., No. 11, 11–18 (2016).Google Scholar
  5. 5.
    A. M. Khelemskii, A. V. Tarasov, and A. N. Kazantsev, Melting Copper Zinc Raw Material in a Vanyukov Furnace [in Russian], Kedr, Ekaterinburg (1993).Google Scholar
  6. 6.
    B. V. Abdulazizov, M. M. Sladkov, S. N. Gotenko, et al., “Engineering equipment and an increase in the operating reliability of a metallurgical cpmplex in OAO Central Ural Copper Smelting Plant,” Tsvet. Met., No. 10 (862), 29–34 (2014).Google Scholar
  7. 7.
    E. N. Selivanov, R. I. Gulyaeva, N. I. Selmenskikh, and V. V. Belyaev, “Structure and thermal properties of the matt of the autogenous smelting of copper-zinc concentrates,” Russian Metallurgy (Metally),49, No. 1, 34–42 (2017).Google Scholar
  8. 8.
    E. N. Selivanov, R. I. Gulyaeva, and V. V. Belyaev, “Loss of metals with slags of autogenic metal of copper-zinc concentrates,” Tsvet. Met., No. 11, 809 (2009).Google Scholar
  9. 9.
    E. N. Selivanov and V. V. Belyaev, “Interphase distribution of copper and associated metals during copper matte conversion,” Tsvet. Met., No. 8, 18–23 (2004).Google Scholar
  10. 10.
    E. N. Selivanov, V. V. Belyaev, R. I. Gulyaeva, et al., “Phase composition of products and metal distribution during flotation of converter slags of the OAO Central Ural Copper Smelting Plant,” Tsvet. Met., No. 12, 23–27 (2008).Google Scholar
  11. 11.
    E. N. Selivanov, R. I. Gulyaeva, S. I. Tyushnyakov, et al., “Treatment of flotation tailings,” in: Scientific Bases and Practice of Treating Ore and Technogenic Raw Material [in Russian], Fort-Analog-Iset’, Ekaterinburg (2012).Google Scholar
  12. 12.
    S. V. Mamonov, G. I. Gazaleeva, T. P. Dresvyankina, and S. V. Volkova, “Improvement of technology for processing coppersmelting production dump slags,” Obogashch. Rud., No. 1, 38042 (2018).Google Scholar
  13. 13.
    N. Karimi, R. Vaghar, M. R. Tavakoli Mohammadi, and S. A. Hashemi, “Recovery of copper from the slag of Khatoonabad flash smelting furnace by flotation method,” J. of the Institution of Engineers (India). Ser. D,94, No. 1, 43–50 (2013).CrossRefGoogle Scholar
  14. 14.
    G, A. Gazaleev, S. V. Mamonov, M. M. Sladkov, and A. V. Kutepov, “Improvement of production indices for enrichment during copper slag treatment,” Tsvet. Met., No. 3(879), 18–22 (2016).Google Scholar
  15. 15.
    E. A. Trofimov and G. G. Mikhailov, “Phase equilibrium realized in Cu–As (Sb, Bi)–O systems under conditions for copper melt existence,” Izv. Vyssh. Uchebn. Zaved., Tsvet. Met., No. 2, 3–7 (2011).Google Scholar
  16. 16.
    E. N. selivanov, A. N. Popov, N. I. Sel’menskikh, and A. B. Lebed’, “Oxidation of copper inclusions during flame refining,” Tsvet. Met., No. 3(843), 26–35 92013).Google Scholar
  17. 17.
    S. A. matyugin, N. A. Volkova, S. S. Naboichenko, and M. A. Lastykina, Electrolytic Refining Copper and Nickel Slurries [in Russian], UrFU, Ekaterinburg (2013).Google Scholar
  18. 18.
    E. N. Selivanov, R. I. Gulyaeva, G. V. Skopov, and A. V. Matveev, “Material composition of the dust from the electrostatic precipitators of Vanyukov furnace at the Middle Ural copper smelting,” Metallurgist,58, No. 5-6, 431–435 (2014).CrossRefGoogle Scholar
  19. 19.
    Yu. F. Sergeeva, S. V. Mamyachenkov, V. A. Sergeev, and N. R. Galyamova, “Contemporary methods for treating copper smelting enterprise dust,” Butler. Soobshch.,30, No. 5, 1–19 (2012).Google Scholar
  20. 20.
    A. M. Pan’shin, O. S. Anisomova, S. V. mamyachenkov, and S. V. Karelov, “Phase composition of products of ferrous metallurgy Waeltz zinc-containing dust,” Tsvet. Met., No. 8, 51–54 (2013).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • E. N. Selivanov
    • 1
    Email author
  • D. O. Novikov
    • 1
  • V. V. Belyaev
    • 2
  1. 1.Institute of Metallurgy, Ural Section, Russian Academy of SciencesEkaterinburgRussia
  2. 2.OOO UGMK Holding, Verkhnyaya Pyshma, Russia, and NChOU VO Technical University UGMKVerkhnyaya PyshmaRussia

Personalised recommendations