Advertisement

Metallurgist

, Volume 63, Issue 5–6, pp 604–616 | Cite as

Study of the Effect of Composition and Thermal Deformation Treatment on Properties of Ferritic Steels Microalloyed with Titanium and Niobium. Part 2. Phase Precipitate Characteristics*

  • A. V. KoldaevEmail author
  • A. I. Zaitsev
  • I. A. Krasnyanskaya
  • D. L. D’yakonov
Article
  • 7 Downloads

The effect of composition and thermal deformation treatment parameters (temperature for the end of rolling and strip winding on a coil, cooling rate after rolling) on mechanical properties, microstructure, and characteristics of precipitates (type, amount, size, morphology, distribution) in advanced ferritic automotive sheet steels is studied. It is demonstrated for the first time that these steels make it possible to obtain simultaneously high strength, ductility and formability due to a homogeneous fine ferritic microstructure additionally strengthened by volumetric system of nano-sized carbide precipitates. It is shown that the contribution to steel strengthening due to the formation of phase precipitates can reach significant values of more than 300 MPa. The main features of phase precipitate, microstructure, and property formation of ferritic steels are established.

Keywords

ferritic automotive sheet steels phase precipitates strength; plasticity microstructure transmission electron microscopy precipitation hardening acicular ferrite 

References

  1. 1.
    K Hasegawa, K. Kawamura, T. Urabe, and Y. Hosoya, “Effects of microstructure on stretch-flange-formability of 980 MPa grade cold-rolled ultra-high strength steel,” ISIJ Int.,44, No. 3, 603–609 (2004).Google Scholar
  2. 2.
    K. Seto, Y. Funakawa, and S. Kaneko, “Hot rolling high-strength steels for suspension and chassis parts “NANOHITEN” and “BTH steels”, JFE Technical Report, No. 10, 19–25 (2007).Google Scholar
  3. 3.
    N. G. Shaposhnikov, A. V. Koldaev, A. I. Zaitsev, et al., “Features of titanium carbide precipitation in low carbon high strength steels microalloyed with titanium and molybdenum,” Metallurgist,60, No. 7-8, 49–64 (2016).CrossRefGoogle Scholar
  4. 4.
    Z. Zhang, Q. Yong, X. Sun, et al., “Effect of Mo addition on the precipitation behavior of carbide in Nb-bearing HSLA steel,” in: Proc. of Conf. “HSLA Steels 2015, Microalloying 2015 & Offshore Engineering Steels 2015”. Chinese Society for Metals and Chinese Academy of Engineering (2016).Google Scholar
  5. 5.
    J. H. Jang, C. H. Lee, Y. U. Heo, and D. W Suh, “Stability of (Ti,M) C (M = Nb, V, Mo and W) carbide in steels using firstprinciples calculations,” Acta Mater.,60, 208–217 (2012).CrossRefGoogle Scholar
  6. 6.
    F. Z. Bu, X. M. Wang, S. W. Yang, et al., “Contribution of interphase precipitation on yield strength in thermomechanically simulated Ti–Nb and Ti–Nb–Mo microalloyed steels,” Mater. Sci. & Eng. A,620, 22–29 (2014).CrossRefGoogle Scholar
  7. 7.
    A. I. Zaitsev, A. V. Koldaev, B. M. Mogutnov, et al, “Study of the role of molybdenum in an alloying system for high-strength ferritic automotive sheet steels,” Probl. Chern. Met. Materialoved., No. 3, 65–71 (2018).Google Scholar
  8. 8.
    A. J. De Ardo, “Niobium in modern steels,” Int. Mater. Reviews,48, No. 6, 371–402 (2003).CrossRefGoogle Scholar
  9. 9.
    A. I. Zaitsev, “Prospective directions for development of metallurgy and materials science of steel,” Pure and Applied Chemistry,89, No. 10, 1553–1565 (2017).CrossRefGoogle Scholar
  10. 10.
    Z. Wang, H. Zhang, C. Guo, et al., “Effect of molybdenum addition on the precipitation of carbides in the austenite matrix of titanium micro-alloyed steels,” J. Mater. Sci.,51, 4996–5007 (2016).CrossRefGoogle Scholar
  11. 11.
    N. Kamikawa, Y. Yoshihisa ABE, G. Miyamoto, and Y. Funakawa, “Tensile behavior of Ti,Mo-added low carbon steels with interphase precipitation,” ISIJ International,54, No. 1, 212–221 (2014).CrossRefGoogle Scholar
  12. 12.
    X. Mao, X. Huo, X. Sun, and Y. Chai, “Strengthening mechanisms of a new 700 MPa hot rolled Ti-microalloyed steel produced by compact strip production,” J. of Mater. Proc. Technology,210, 1660–1666 (2010).CrossRefGoogle Scholar
  13. 13.
    S. K. Ghosh, P. S. Bandyopadhyay, S. Kundu, and S., Chatterjee, “Copper bearing microalloyed ultrahigh strength steel on a pilot scale: Microstructure and properties,” Mater. Sci. and Eng. A,528, 7887–7894 (2011).CrossRefGoogle Scholar
  14. 14.
    K. J. Irvin, F. B. Pickering, and T. Gladman, “Grain–refined C–Mn steels,” J. Iron Steel Inst.,205, Nо. 2, 161–182 (1967).Google Scholar
  15. 15.
    E. Orowan, “Dislocations and mechanical properties,” in: M. Cohen (editor), Dislocations in Metals, New York (1954).Google Scholar
  16. 16.
    S. Kazuhiro, F. Yoshimasa, and K. Shijiro, “Hot rolled high strength steels for suspension and chassis parts “NANOHITEN” and “BHT” Steel,” JFE Technical Report, No. 10, 19–25 (2007),Google Scholar
  17. 17.
    L. Lan, et al., “Analysis of martensite–austenite constituent and its effect on toughness in submerged arc welded joint of low carbon bainitic steel,” J. of Mater. Sci.,47, No. 11, 4732–4742 (2012).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. V. Koldaev
    • 1
    Email author
  • A. I. Zaitsev
    • 1
  • I. A. Krasnyanskaya
    • 1
  • D. L. D’yakonov
    • 1
  1. 1.FGUP I. P. Bardin TsNIIchermetMoscowRussia

Personalised recommendations