Advertisement

Development of Technology for Preparing Composite Material Based on Aluminum Strengthened with Hollow Ceramic Microspheres

  • E. A. ChernyshovEmail author
  • A. D. Romanov
  • B. S. Kaverin
  • V. A. Varyukhin
  • A. M. Ob’edkov
  • N. M. Semenov
Article
  • 7 Downloads

The possibility of preparing cast billets of aluminum alloy strengthened by adding hollow aluminosilicate microspheres is investigated. Results of microstructural analysis and a study of strength properties are provided. Experiments are conducted in order to increase molten metal adhesion to the surface of microspheres, both with classical microspheres, and with microspheres with surface modified by with a coating containing chromium and chromium carbide. The effect of adhesion on mechanical properties is demonstrated.

Keywords

aluminum aluminosilicate microspheres strength porosity 

Notes

Work was partly performed within the framework of fulfilling IMKh RAN State assignment on theme 45.8 (Reg. No. AAAA-A16-11622110057-9).

References

  1. 1.
    E. N. Kablov, “Strategic areas for development of materials and processing technology in the period up to 2020,” Aviats. Mater. Tekhnol., No. 5, 7–17 (2012).Google Scholar
  2. 2.
    Yu. A. Kurganova, “Prospects for developing metal matrix composite materials for industrial purposes,” Servis Rossii Rubezh., No. 3(30), 235–240 (2012).Google Scholar
  3. 3.
    D. K. Koli, G. Agnihotri, and R. Purohit, “Properties and characterization of Al–Al2O3 composites processed by casting and powder metallurgy routes (Review),” IJLTET, 2, No. 4, 486–493 (2013).Google Scholar
  4. 4.
    Liu Yao-Hui, Du Jun, Yu Si-rong, and Wang Wei, “High temperature friction and wear behavior of Al2O3 and/or carbon short fiber reinforced Al–12Si alloy composites,” Wear, 256, 275–285 (2004). DOI:  https://doi.org/10.1016/S0043-1648(03)00387-9 CrossRefGoogle Scholar
  5. 5.
    V. Yu. Bazhin, E. M. Gutema, and S. A. Savchenkov, “Features of technology for manufacturing aluminum alloys with a silicon carbide framework,” Metallurg., No. 12, 63–66 (2016).Google Scholar
  6. 6.
    Prashant Karandikar, Eric M. Klier, Matthew Watkins, et al., Al/Al2O3 Metal Matrix Composites (MMCs) and Macrocomposites for Armor Applications, Army Research Laboratory ARL-RP-460 MD 21005-5069. September (2013).Google Scholar
  7. 7.
    E. Candan, H. Ahlatci, and H. Cimenoglu, “Abrasive wear behavior of Al-SiС composites produced by pressure infiltration technique,” Wear, 247, 133–138 (2001).CrossRefGoogle Scholar
  8. 8.
    A. Gnanavelbabu, K. Rajkumar, and P. Saravanan, “Investigation on the cutting quality characteristics of abrasive water jet machining of AA6061-B4C-hBN hybrid metal matrix composites,” Mater. and Manufacturing Proc., 33, No. 12, 1313–1323 (2018).CrossRefGoogle Scholar
  9. 9.
    E. Shankar, S. Balasivanandha Prabu, T. S. Kumar, and M. R. S. John, “Investigation of TiAlN coated roller burnishing on Al-(B4C) pMMC workpiece material,” Mater. and Manufacturing Proc., 33, No. 11, 1242–1249 (2018).CrossRefGoogle Scholar
  10. 10.
    R. Liu, C. Wu, J. Zhang, et al., “Microstructure and mechanical behaviors of the ultrafine grained AA7075/B4C composites synthesized via one-step consolidation,” J. Alloys and Compounds, No. 748 (2018).Google Scholar
  11. 11.
    A. I. Kovtunov, Yu. Yu. Khokhlov, and S. V. Myamin, “Technology for forming layered composite materials of the titanium-foam aluminum system,” Metallurg., No. 4, 6–61 (2015).Google Scholar
  12. 12.
    S. V. Voronin and P. S. Loboda, “Methods for preparing porous materials based on aluminum,” Zv. Samar. Nauch. Tsentr, RAN, 18, No. 4-6, 1068–1074 (2016).Google Scholar
  13. 13.
    S. D. Samuilov and O. A. Troitskii, “New methods for preparing porous metallic materials with a coating and open porosity,” Fund. Prikl. Probl. Tekhnol., No. 3(323), 12–16 (2017).Google Scholar
  14. 14.
    T. N. Teryaeva, O. V. Kostenko, Z. R. Ismagilov, et al., “Physicochemical properties of aluminum silicate hollow microspheres,” Vestn. Kuzbass. Gos. Tekhn. Univ., No. 5 (99), 86–90 (2013).Google Scholar
  15. 15.
    L. P. Varlamova, V. K. Cherkassov, A. M. Domrachev, et al., “Study of physicomechanical properties of foam urethane-filled aluminum silicate microspheres with a pyrolytic chromium coating,” Zh. Prikl. Khim., 83, No. 3, 494–498 (2010).Google Scholar
  16. 16.
    M. Spirin, “Cerasmic and glass hollow microspheres (information about products and applications,” Lakokras. Mater. Primenen., No. 1-2, 34–35 (2008).Google Scholar
  17. 17.
    B. Zh. Dzhangurazov, G. V. Kozlov, and A. K. Mikitaev, “Effect of the level of interphase adhesion on the structure of nano-filler in nano-composite polymer/organoclay,” Poverkh. Rent. Sinkhr. Neitron, Issled., No. 7, 96–99 (2011).Google Scholar
  18. 18.
    G. A. Razuvaev, G. A. Gribov, G. A. Domrachev, and B. A. Salamatin, Organometal Compounds in Electronics [in Russian], Nauka, Moscow (1972).Google Scholar
  19. 19.
    V. M. Shekunova, A. M. Ob’edkov, E. I. Tsyganova, et al., “Conversion of light alkanes on chromium-containing aluminum silicate ash microspheres,” Vestn. YuUrGU, Ser. Khim., 9, No. 3, 37–47 (2017).Google Scholar
  20. 20.
    A. I. Kirillov, A. M. Ob’edkov, V. A. Egorov, et al., “Creation by means of MOCVD technology of nano-structured composite materials based on multiwalled carbon nanotubes,” Nanotekhnika, No. 1, 72–78 (2011).Google Scholar
  21. 21.
    Yu. A. Kurganova, Development and Use of Precipitation Hardened Aluminum Matrix Composite Materials in Engineering [in Russian], Dis. Doc. Techn. Sci., Moscow (2008).Google Scholar
  22. 22.
    E. A. Chernyshev, A. D. Romanov, E. A. Romanova, and V. V. Myl’nikov, “development of technology for preparing aluminum matrix cast composite material by means of synthesizing strengthening aluminum oxide phase in molten aluminum,” Izv. Vyssh. Uchebn. Zaved., Poroshk. Metal. Fund. Pokryt., No. 4, 29–36 (2017).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • E. A. Chernyshov
    • 1
    Email author
  • A. D. Romanov
    • 1
  • B. S. Kaverin
    • 2
  • V. A. Varyukhin
    • 2
  • A. M. Ob’edkov
    • 2
  • N. M. Semenov
    • 2
  1. 1.R. E. Alekseev Nizhegorod State technical UniversityNizhnii NovgorodRussia
  2. 2.FGBU Science G. A. Razuvaev Institute of Organo-Metal ChemistryRussian Academy of SciencesNizhnii NovgorodRussia

Personalised recommendations