Dependence of Corrosion Resistance for Aluminum Alloys with Composition Increased Impurity Content

  • Yu. N. MansurovEmail author
  • D. S. Kadyrova
  • J. Rakhmonov

The effect of the main impurities, added separately to an alloy, on aluminum-magnesium alloy corrosion resistance, and also in combination on the corrosion properties of secondary cast alloy AMg5K is studied. Comparative tests are conducted for corrosion resistance of industrial silumin and magnalium under different climatic conditions. Experimental results are provided for a study of the effect of alloy composition on corrosion properties under different climatic conditions.


aluminum magnesium silicon iron copper alloys corrosion impurities structure properties 


Research was conducted with the aim of increasing the efficiency of using scrap and waste aluminum alloys in creative cooperation with scientists and specialists of the Tashkent Chemical Technological institute and the Navoi State Mining Institute of the Uzbekistan Republic within the scope of combined work in the post-planning period according to programs MMATENG and NETCENG of the European Commission.


  1. 1.
    N. A. Belov, A. A. Aksenov, and D. G. Eskin, Multicomponent Phase Diagrams: Applications for Commercial Aluminum Alloys, Elsevier (2005).Google Scholar
  2. 2.
    V. S. Zolotorevskiy, N. A. Belov, and M. V. Glazoff, Casting Aluminum Alloys, Elsevier (2007).Google Scholar
  3. 3.
    D. E. Eskin, Suyitno, and L. Katgerman, Progress in Mat. Science, 49, No. 5, 630–711 (2004).Google Scholar
  4. 4.
    C. Sung-Hwan, S. Si-Young, C. Hyun-Joo, et al., “High temperature tensile deformation behavior of new heat resistant aluminum alloy,” Procedia Engineering, No. 10, 159–164 (2011).Google Scholar
  5. 5.
    N. A. Belov, A. N. Alabin, and S. S. Mishurov, “Influence of iron and silicon on the phase composition and structure of heatresistant casting nikalines strengthened by nanoparticles,” Russian J. Non-Ferrous Metals, 52, No. 3, 244–253 (2011).CrossRefGoogle Scholar
  6. 6.
    N. A. Belov, E. A. Naumova, and V. V. Doroshenko, “Effect of iron and manganese on the phase composition and microstructure of aluminum-calcium alloys,” Tsvet. Met., No. 8, 66–71 (2017).Google Scholar
  7. 7.
    A. A. Andreeva, S. Yu. Mansurov, D. V. Miklushevskii, and Yu. N. Mansurov, “Model of innovative process formation for large industrial enterprises,” Tsvet. Met., No. 3, 74–77 (2015).Google Scholar
  8. 8.
    Yu. N. Mansurov, V. P. Reva, S. Yu. Masurov, and M. V. Beloborodov, “Economic and social bases of materials science development in the Far East,” Tsvet. Met., No. 11, 86–93 (2016).Google Scholar
  9. 9.
    D. V. Miklushevskii, S. Yu. Mansurov, T. N. Piterskaya, and Yu. N. Mansurov, “Economics and control of the innovative activity of universities,” Tsvet. Met., No. 9, 6–12 (2015).Google Scholar
  10. 10.
    N. A. Belov, A. N. Alabin, RF Patent 2534170, МPК C22C21/12, C22F1/057, C22C1/02. Heat-resistant alloy based on aluminum and methods for preparing deformed semiproducts from it, Claim 01.18.2013, Publ. 08.04.2014.Google Scholar
  11. 11.
    P. Uliasz, T. Knych, A. Mamala, and V. Smyrak, “Investigation in properties design of heat resistant AlZrSc alloy wires assigned for electrical application,” Aluminum Alloys: Their Physical and Mechanical Properties, 248–255 (2008).Google Scholar
  12. 12.
    Yu. N. Mansurov, N. A. Belov, A. V. Sannikov, and I. Yu. Buravlev, “Optimization of composition and properties of heat-resistant complex-alloyed aluminum alloy castings,” Non-Ferrous Metals, 39, No. 2, 48–55 (2015).CrossRefGoogle Scholar
  13. 13.
    A. A. Aksenov, Yu. N. Mansurov, V. P. Reva, et al., “Mechanical alloying of secondary raw material for preparing foamaluminum,” Metallurg, No. 6, 59–68 (2017).Google Scholar
  14. 14.
    Yu. N. Mansurov, E. I. Kurbatkina, I. Yu. Buravlev, and V. P. Reva, “Features of structure’s formation and properties of composite aluminum alloy ingots,” Non-Ferrous Metals, 39, No. 2, 40–47 (2015).CrossRefGoogle Scholar
  15. 15.
    J. Qiu, Y. Liu, F. Meng, et al., “Effects of environment on dry sliding wear of powder metallurgical Ti–47Al–2Cr–2Nb–0.2W,” Intermetallics, 53, 10–19 (2014).CrossRefGoogle Scholar
  16. 16.
    J. Cheng, Y. Yu, L. Fu, et al., “Effect of TiB2 on dry-sliding tribological properties of TiAl intermetallics,” Tribol. Int., 62, 91–99 (2013).CrossRefGoogle Scholar
  17. 17.
    A. V. Kartavykh. M. V. Gorshenkov, V. D. Danilov, et al., “Tribochemistry of dry-sliding wear of structural TiAl(Nb,Cr,Zr)B,La intermetallics family against the chromium steel,” Tribol. Int., 90, 270–277 (2015).CrossRefGoogle Scholar
  18. 18.
    G. P. Fetisov and M. G. Karpman, Materials science and Metal Technology: High School Textbook [in Russian], Vysshaya Shkola, Moscow (2001).Google Scholar
  19. 19.
    K. Knipling, D. Dunand, and D. Seidman, “Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during isothermal aging at 375–425 °C,” Acta Mater, No. 56, 114–127 (2008).Google Scholar
  20. 20.
    W. Lefebvre, F. Danoix, H. Hallem, et al., “Precipitation kinetic of Al3(Sc,Zr) dispersoids in aluminium,” J. Alloys Compd., No. 470, 107–110 (2009).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yu. N. Mansurov
    • 1
    Email author
  • D. S. Kadyrova
    • 2
  • J. Rakhmonov
    • 3
  1. 1.National Research Technology University, MISiSMoscowRussia
  2. 2.Tashkent Chemical technology InstituteTashkentUzbekistan
  3. 3.Navoi State Mining InstituteNavoiUzbekistan

Personalised recommendations