pp 1–11 | Cite as

Testing of the Technology of Radial-Shear Rolling and Predesigning Selection of Rolling Minimills for the Adaptable Production of Titanium Rods with Small Cross Sections Under the Conditions of the “CHMP” JSC

  • D. A. NegodinEmail author
  • S. P. Galkin
  • E. A. Kharitonov
  • B. V. Karpov
  • D. N. Khar’kovskii
  • I. A. Dubovitskaya
  • P. V. Patrin

We perform the experimental testing of the technological capabilities of radial-shear rolling (RSR) in minimills aimed at the production of titanium bars with diameters of 10-40 mm from billets produced at the “Chepetskii Mechanical Plant” JSC (ChMP). The investigation of the quality of pilot bars reveals its complete compliance with the requirements of the current specifications and technical documentation. The experimentally tested technological scheme and RSR mills can be used for the creation of high-tech rolling modules with adaptable production program. We propose various versions of the constructive arrangement of minimills and a rational technological scheme of their operation.


radial-shear rolling titanium alloys rolling modes minimills macro- and microstructures mechanical properties layout of three-roll stands 


  1. 1.
    Yu. Adno, “The phenomenon of metallurgical miniplants,” Mir. Èkon. Mezhdunarod. Otnosh., No. 3, 34–45 (2014).Google Scholar
  2. 2.
    I. N. Potapov and P. I. Polukhin, Technology of Screw Rolling [in Russian], Metallurgiya, Moscow (1990).Google Scholar
  3. 3.
    B. A. Romantsev, S. P. Galkin, V. K. Mikhajlov, et al., Bar micromill,” Stal’, No. 2, 40–42 (1995).Google Scholar
  4. 4.
    S. P. Galkin, “Trajectory of deformed metal as basis for controlling the radial-shift and screw rolling,” Stal’, No. 7, 63–66 (2004).Google Scholar
  5. 5.
    S. P. Galkin, B. A. Romantsev, and E. A. Kharitonov, “Putting into practice innovative potential in the universal radial-shear rolling process,” CIS Iron Steel Rev., No. 9, 35–39 (2014).Google Scholar
  6. 6.
    V. Sheremetyev, A. Kudryashova, S. Dubinskiy, et al., Structure and functional properties of metastable beta Ti–18Zr–14Nb (at.%) alloy for biomedical applications subjected to radial shear rolling and thermomechanical treatment,” J. of Alloys Comp., 737, 678–683 (2018).CrossRefGoogle Scholar
  7. 7.
    I. Sh. Valeev and A. Kh. Valeeva, “Variations of the microhardness and microstructure of m1 copper in the course of radial-shear rolling,” Pis’ma Mater., 3, No. 1 (9), 38–40 (2013).Google Scholar
  8. 8.
    S. Dobatkin, S. Galkin, Y. Estrin, et al., Grain refinement, texture, and mechanical properties of a magnesium alloy after radialshear rolling,” J. of Alloys Comp., 774, 969–979 (2019).CrossRefGoogle Scholar
  9. 9.
    T. K. Akopyan, A. S. Aleshchenko, N. A. Belov, and S. P. Galkin, “Effect of radial-shear rolling on the formation of structure and mechanical properties of Al–Ni and Al–Ca aluminum–matrix composite alloys of eutectic type,” Phys. Met. Metallogr., 119, Issue 3, 241–250 (2018).CrossRefGoogle Scholar
  10. 10.
    E. V. Naydenkin, I. V. Ratochka, I. P. Mishin, and O. N. Lykova, “Evolution of the structural-phase state of a VT22 titanium alloy during helical rolling and subsequent aging,” Russian Phys. J., 58 (8), 1068–1073 (2015).CrossRefGoogle Scholar
  11. 11.
    A. Kh. Valeeva, I. Sh. Valeev, and R. F. Fazlyakhmetov, “Microstructure of the β -phase in the Sn11Sb5.5Cu Babbitt,” Phys. Met. Metallogr., 118, No. 1, 48–51 (2017).CrossRefGoogle Scholar
  12. 12.
    A. B. Naizabekov, S. N. Lezhnev, H. Dyja, et al., The effect of cross rolling on the microstructure of ferrous and nonferrous metals and alloys,” Metalurgiya, 56, Issues 1–2, 199–202 (2017).Google Scholar
  13. 13.
    B. V. Karpov, P. V. Patrin, S. P. Galkin, et al., “Radial-shear rolling of titanium alloy VT-8 bars with controlled structure for small diameter ingots (≤ 200 mm),” Metallurgist, 61, Issues 9–10, 884–890 (2018).CrossRefGoogle Scholar
  14. 14.
    K. Vol’ratkh, “Production of round rolled products with the use of three-roll mills,” Chern. Met., No. 12, 23–24 (2004).Google Scholar
  15. 15.
    G. Nussbaum, V. Kremer, G. Bittner, and G. Shnel’, “Experience and results of the exploitation of a three-roll reduction-calibration unit,” Chern. Met., No. 1, 37–43 (2007).Google Scholar
  16. 16.
    Yu. S. Radyuchenko, Rotation Forging [in Russian], Mashlit, Moscow (1962).Google Scholar
  17. 17.
    V. A. Andreev, V. S. Yusupov, M. M. Perkas, et al., Mechanical and functional properties of commercial alloy TN-1 semiproducts fabricated by warm rotary forging and ECAP,” Russ. Metallurgy, 2017, Issue 10, 890–894 (2017).Google Scholar
  18. 18.
    S. P. Galkin, Theory and Technology of Stationary Screw Rolling of Billets and Rods of Low-Plasticity Steels and Alloys [in Russian], Doctoral-Degree Thesis (Engineering), MISiS, Moscow (1998).Google Scholar
  19. 19.
    A. V. Goncharuk, B. A. Romantsev, V. K. Mikhailov, et al., A Procedure of Screw Rolling and a Device for Its Realization [in Russian], Patent 2179900 RF, MPK V21V19/00; Claimed on 28.04.2001; Publ. on 27.02.2002. Bull. No. 6.Google Scholar
  20. 20.
    S. P. Galkin, A. V. Goncharuk, E. K. Daeva, et al., “Multipass screw rolling system,” Steel in Translat., 33, No. 9, 45–47 (2003).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • D. A. Negodin
    • 1
    Email author
  • S. P. Galkin
    • 2
  • E. A. Kharitonov
    • 2
  • B. V. Karpov
    • 2
  • D. N. Khar’kovskii
    • 1
  • I. A. Dubovitskaya
    • 1
  • P. V. Patrin
    • 2
  1. 1.Chepetskii Mechanical PlantGlazovRussia
  2. 2.“MISiS” National Research Technological UniversityMoscowRussia

Personalised recommendations