Prediction of Austenite Flow Stresses During Steel Hot Deformation Strengthened with Interphase Nanosize Carbide Precipitates

  • A. V. KoldaevEmail author
  • A. B. Stepanov
  • A. I. Zaitsev
  • N. A. Arutyunyan

A model is developed for austenite flow stress dynamics during hot deformation that makes it possible to construct stress-strain curves at different temperatures, and strain rate in relation to steel chemical composition. The model is verified on the basis of independent published data and good convergence of the results obtained is demonstrated. Stress calculations are performed using the model during hot rolling for steel strengthened due to a system of titanium carbide interphase precipitates. The effect of adding titanium and molybdenum on temperature for the end of recrystallization is established.


high-strength steels flow stress hot rolling strain modeling recrystallization stoppage temperature microalloying grain refinement 


  1. 1.
    C. A. Hernandez, S. F. Medina, and J. Ruiz, “Modelling austenite flow curves in low alloy and microalloyed steels,” Acta Mater., 44, No. 1, 155 (1996).CrossRefGoogle Scholar
  2. 2.
    R. Ding and Z. X. Guo, “Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization,” Acta Mater., 49, 3163–3175 (2001).CrossRefGoogle Scholar
  3. 3.
    M. Mukherjee, U. Prahl, and W. Bleck, “Modelling of microstructure and flow stress evolution during hot forging,” Steel Research Int., 81, No. 12, 1102–1116 (2010).CrossRefGoogle Scholar
  4. 4.
    E. I. Poliakt and J. J. Jonas, “A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization,” Acta Mater., 44, No. 1, 127–136 (1996).CrossRefGoogle Scholar
  5. 5.
    T. Sakai and J. J. Jonas, “Dynamic recrystallization: mechanical and microstructure considerations,” Acta Metall., 32, No. 2, 189–209 (1984).CrossRefGoogle Scholar
  6. 6.
    A. Laasraoui and J. J. Jonas, “Prediction of steel flow stresses at high temperatures and strain rates,” Metallurgical Trans. A, 22, No. 7, 1545–1558 (1991).CrossRefGoogle Scholar
  7. 7.
    S. F. Medina and C. A. Hernandez, “Modelling of the dynamic recrystallization of austenite in low alloy and microalloyed steels,” Acta Mater., 44, No. 1, 165–171 (1996).CrossRefGoogle Scholar
  8. 8.
    S. F. Medina and C. A. Hernandez, “General expression of the Zener–Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels,” Acta Mater., 44, No. 1, 137–148 (1996).CrossRefGoogle Scholar
  9. 9.
    C. Zener and J. H. Hollomon, “Effect of strain rate upon plastic flow of steel,” J. Appl Phys., 15, No. 1, 22–32 (1944).CrossRefGoogle Scholar
  10. 10.
    H. J. Mc Queen, “Deformation mechanisms in hot working,” J. Metals, 20, Mo. 4, 31–38 (1968).Google Scholar
  11. 11.
    C. M. Sellars and W. J. M. G. Tegart, “Relationship between strength and structure in deformation at elevated temperatures,” Mem. Sci. Rev. Met., 63, No. 9, 731 (1966).Google Scholar
  12. 12.
    S. F. Sokolov, Study and Modeling of Microstructure Evolution and Deformation Resistance During Hot Pressing, Diss. Cand. Techn. Sci., St. Petersburg (2013).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. V. Koldaev
    • 1
    Email author
  • A. B. Stepanov
    • 1
  • A. I. Zaitsev
    • 1
    • 2
  • N. A. Arutyunyan
    • 1
    • 2
  1. 1.FGUP I. P. Bardin TsNIIchermetMoscowRussia
  2. 2.Chemical FacultyM. V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations