, Volume 62, Issue 5–6, pp 549–558 | Cite as

Improving the Method of Calculating the Critical Stresses and Strains in Strips Rolled in the Edging Rolls of a Universal Mill

  • R. L. ShatalovEmail author
  • E. A. Maksimov
  • A. S. Kalmykov

The effect of elastic, plastic and elastoplastic models on the accuracy of the calculated critical stresses and strains of copper strips hot-rolled in the edging rolls of a universal two-high mill is studied. It is shown that using elastoplastic models improves the accuracy of the calculated critical stresses by a factor of 150 to 200 and the accuracy of setting up the sheet mill to ensure rolling stability. Analytical equations for calculating the critical compressive stresses for various rolling conditions are derived. The critical compressive stresses and strains are calculated to find their permissible values ensuring the stability of a copper strip hot-rolled in the edging rolls of an 850 × 1000 universal mill.


critical compressive stresses and strains edging rolls copper hot rolling 850 × 1000 universal sheet mill 


  1. 1.
    P. I. Polukhin, V. P. Klimenko, et al., Rolling of Thick Sheets, Metallurgiya, Moscow (1984).Google Scholar
  2. 2.
    A. I. Gertsev and I. M. Meerovich, “Deformation condition for rolling workpieces in the edger of a sheet mill,” in: Trans. VNIIMetMash, Issue 18, ONTI, Moscow (1966), pp. 103–122.Google Scholar
  3. 3.
    R. L. Shatalov and S. A. Karpov, “Improving the lengthwise stability of a strip hot-rolled in a reversing universal mill,” in: Proc. 6th Congr. of Rolling-Mill Operators (Lipetsk, October 18–21, 2005), Vol. 1, Ob’edinenie Prokatchikov, Moscow (2005), pp. 99–100.Google Scholar
  4. 4.
    P. I. Polukhin, G. Ya. Gun, and A. M. Galkin, Plastic Strength of Metals and Alloys [in Russian], Metallurgiya, Moscow (1983).Google Scholar
  5. 5.
    O. E. Osintsev and V. N. Fedorov, Handbook of Copper and Its Alloys, Mashinostroenie, Moscow (2004).Google Scholar
  6. 6.
    Yu. D. Zheleznov, Rolling of Flat Sheets and Strips, Metallurgiya, Moscow (1970).Google Scholar
  7. 7.
    G. P. Grigoryan, Y. D. Zheleznov, V. A. Chernyi, et al., Adjustment, Stabilization, and Control of Sheet Rolling Process, Metallurgiya, Moscow (1975).Google Scholar
  8. 8.
    Yu. D. Zheleznov, G. G. Grigoryan, R. L. Shatalov, et al., “Difference between the rolling conditions before and after loss of flatness of the strip,” in: Theory and Technology of Metal Forming (Trans. MISiS), Issue 81, Metallurgiya, Moscow (1975), pp. 157–160.Google Scholar
  9. 9.
    S. P. Timoshenko, Stability of Beams, Plates, and Shells [in Russian], Nauka, Moscow (1971).Google Scholar
  10. 10.
    R. L. Shatalov and E. A. Maksimov, “Refining the method for calculating the critical stresses and ductility index of a rolled strip,” Stal, No. 4, 26–30 (2016).Google Scholar
  11. 11.
    L. M. Kachanov, Fundamentals of the Theory of Plasticity, Dover, New York (2004).Google Scholar
  12. 12.
    A. S. Vol’mir, Stability of Deformable Systems, Nauka, Moscow (1967).Google Scholar
  13. 13.
    Yu. N. Raikov, G. V. Ashikhmin, V. P. Polukhin, and A. S. Gulyaev, Handbook of Copper Alloys: Grades, Properties, and Applications [in Russian], Inst. Tsvetmetobrabotka, Moscow (2011).Google Scholar
  14. 14.
    Th. Kármán, “Untersuchungen über Knickfestigkeit (Studies on buckling strength),“ Verein Deutscher Ingenieure, 81, 1–45 (1910).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • R. L. Shatalov
    • 1
    Email author
  • E. A. Maksimov
    • 2
  • A. S. Kalmykov
    • 3
  1. 1.Moscow Polytechnic UniversityMoscowRussia
  2. 2.ZAO IntraiChelyabinskRussia
  3. 3.Moscow Polytechnic UniversityMoscowRussia

Personalised recommendations