, Volume 62, Issue 5–6, pp 532–540 | Cite as

Principles of Creating New Economically Alloyed Ferritic Steels with a Unique Set of Properties

  • A. I. ZaitsevEmail author
  • A. V. Koldaev
  • N. A. Arutyunyan
  • S. F. Dunaev

On the basis of research results it is shown that provision of good strength indices, ductility, forgeability, and operating reliability that are difficult to combine may be provided simultaneously in hot-worked steels by obtaining a uniform finely dispersed ferritic structure and a volumetric system of nano-sized mainly interphase carbide precipitates. These steels have an extremely economical alloying system and simple manufacturing technology providing the possibility of obtaining hot-rolled sheet with thickness up to 1.8 mm and hot-dip zinc coating application. Initially in ferritic steels microalloying with Ti and Mo is used, although the possibility of using a complexly alloyed system of V, Nb, Ti, and Mo is demonstrated.


economically alloyed hot-rolled high-strength steels difficult to combine properties strength ductility operational reliability microalloying nanosized phase precipitations production technology 


  1. 1.
    A. I. Zaitsev, I. G. Rodionova, S. V. Yashchuk, et al., “Development of scientific and technological bases of automobile steel production,” Chern. Met.: Byul. NTiÉI, No. 3(1359), 89–109 (2013).Google Scholar
  2. 2.
    N. Fonstein, Advanced High Strength Sheet Steels: Physical Metallurgy, Design, Processing and Properties, Springer International Publishing, Switzerland (2015).CrossRefGoogle Scholar
  3. 3.
    K. Hasegawa, K. Kawamura, T. Urabe, and Y. Hosoya, “Effects of microstructure on stretch-flange-formability of 980 MPa grade cold-rolled ultra high strength steel sheets,” ISIJ Int., 44, No. 3, 603–609 (2004).CrossRefGoogle Scholar
  4. 4.
    A. I. Zaitsev, I. G. Rodionova, A. A. Pavlov, et al., “Effect of composition, structural state, and manufacturing technology on service properties of high-strength low-carbon steel main bimetal layer,” Metallurgist, 59, No. 7, 684–492 (2015).CrossRefGoogle Scholar
  5. 5.
    Y. Funakawa, T. Fujita, and K. Yavada, “Metallurgical features of NANOHITEN and application to warm stamping,” JFE Technical Report, No. 18, 74–79 (2013).Google Scholar
  6. 6.
    F. A. Khalid and D. V. Edmonds, “Interphase precipitation in microalloyed engineering steels and model alloy,” Mater. Sci. Technol., 9, 384–396 (1993).CrossRefGoogle Scholar
  7. 7.
    K. Seto, Y. Funakawa, and S. Kaneko, “Hot rolling high strength steels for suspension and chassis parts “NANOHITEN” and “BTH steels,” JFE Technical Report, No. 10, 19–25 (2007).Google Scholar
  8. 8.
    Y. Funakawa, T. Shiozaki, K. Tomita, et al., “Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides,” ISIJ Int., 44, 1945–1951 (2004).CrossRefGoogle Scholar
  9. 9.
    N. G. Shaposhnikov, A. V. Koldaev, A. I. Zaitsev, et al., “Features of titanium carbide precipitation in low carbon high strength steels microalloyed with titanium and molybdenum,” Metallurgist, 69, Nos. 7–8, 810–816 (2016).CrossRefGoogle Scholar
  10. 10.
    C. Y. Chen, H. W. Yen, F. H. Kao, et al., “Precipitation hardening of high-strength low-alloy steels by nanometer-sized carbides,” Mater. Sci. Eng. A, 499, 162–166 (2009).CrossRefGoogle Scholar
  11. 11.
    R. Lagneborg and S. Zajac, “A model for interphase precipitation in V-microalloyed structural steels,” Metall. Mater. Trans. A, 32, No. 1, 39–60 (2001).CrossRefGoogle Scholar
  12. 12.
    C. Y. Chen, C. C. Chen, and J. R. Yang, “Microstructure characterization of nanometer carbides heterogeneous precipitation in Ti–Nb and Ti–Nb–Mo steel,” Mater. Charact., 88, 69–79 (2014).CrossRefGoogle Scholar
  13. 13.
    F. Z. Bu, X. M. Wang, S. W. Yang, et al., “Contribution of interphase precipitation on yield strength in thermomechanically simulated Ti–Nb and Ti–Nb–Mo microalloyed steels,” Mater. Sci. Eng. A, 620, 22–29 (2014).CrossRefGoogle Scholar
  14. 14.
    Z. Wang, H. Zhang, C. Guo, et al., “Effect of molybdenum addition on the precipitation of carbides in the austenite matrix of titanium micro-alloyed steels,” J. Mat. Sci., 51, 4996–5007 (2016).CrossRefGoogle Scholar
  15. 15.
    K. Zhang, L. Zhaodong, W. Zhenqiang, et al., “Precipitation behavior and mechanical properties of hot-rolled high strength Ti–Mobearing ferritic sheet steel: The great potential of nanometer-sized (Ti, Mo)C carbide,” J. Mater. Res., 31, No. 9, 1254–1263 (2016).CrossRefGoogle Scholar
  16. 16.
    X. Deng, T. Fu, Z. Wang, et al., “Extending the boundaries of mechanical properties of Ti–Nb low-carbon steel via combination of ultrafast cooling and deformation during austenite-to ferrite transformation,” Met. Mater. Int., 23, No. 1, 175–183 (2017).CrossRefGoogle Scholar
  17. 17.
    N. Kamikawa, K. Sato, G. Miyamoto, et al., “Stress–strain behavior of ferrite and bainite with nano-precipitation in low carbon steels,” Acta Mater., 83, 383–386 (2015).CrossRefGoogle Scholar
  18. 19.
    A. Rijkenberg, A. Blowey, P. Bellina, and C. Wooffindin, “Advanced high stretch-flange formability steels for chassis & suspension applications,” Proc. 4th Int. Conf. on Steels in Cars and Trucks SCT2014 (Braunschweig, Germany, 15–19 June 2014).Google Scholar
  19. 20.
    M. I. Gol’dshtein, S. V. Grachev, and Yu. G. Veksler, Special Steels [in Russian], MISiS, Moscow (1999).Google Scholar
  20. 21.
    F. B. Pickering, Physical Metallurgy and Steel Development [Russian translation], Metallurgiya, Moscow (1982).Google Scholar
  21. 22.
    R. Wang, C. I. Garcia, M. Hua, et al., “Microstructure and precipitation behavior of Nb, Ti complex microalloyed steel produced by compact strip processing,” ISIJ Int., 46, No. 9, 1345–1353 (2006).CrossRefGoogle Scholar
  22. 23.
    T. Gladman, “Precipitation hardening in metals,” Mater. Sci. and Technol., 15, 30–36 (1999).CrossRefGoogle Scholar
  23. 24.
    N. Kamikawa, Y. Abe, G. Miyamoto, et al., “Tensile behavior of Ti, Mo-added low carbon steels with interphase precipitation,” ISIJ Int., 54, No. 1, 212–221 (2014).CrossRefGoogle Scholar
  24. 25.
    A. V. Koldaev, D. L. D’yakonov, A. I. Zaitsev, and N. A. Arutyunyan, “Kinetics of the formation of nanosize niobium carbonitride precipitates in low-alloy structural steels,” Metallurgist, 60, No. 9–10, 1032–1037 (2017).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. I. Zaitsev
    • 1
    Email author
  • A. V. Koldaev
    • 2
  • N. A. Arutyunyan
    • 1
  • S. F. Dunaev
    • 3
  1. 1.FGUP I. P. Bardin TsNIIChermet, Moscow, Russia, Chemical FacultyM. V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.FGUP I. P. Bardin TsNIIChermetMoscowRussia
  3. 3.Chemical FacultyM. V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations